

Wound Component EST Scanner 19035-L/19035-ML User's Manual

Wound Component EST Scanner 19035-L/19035-ML User's Manual

Version 1.2 July 2012

Legal Notices

The information in this document is subject to change without notice.

Chroma ATE INC. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Chroma ATE INC. shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

CHROMA ATE INC.

66 Hwa-Ya 1st Rd., Hwa-Ya Technical Park, Kuei-Shan Hsiang, Taoyuan County, Taiwan

Copyright Notices. Copyright 2009 Chroma ATE INC., all rights reserved. Reproduction, adaptation, or translation of this document without prior written permission is prohibited, except as allowed under the copyright laws.

Warranty

All Chroma instruments are warranted against defects in material and workmanship for a period of one year after date of shipment. Chroma agrees to repair or replace any assembly or component found to be defective, under normal use during this period. Chroma's obligation under this warranty is limited solely to repairing any such instrument, which in Chroma's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Transportation to the factory or service center is to be prepaid by purchaser. Shipment should not be made without prior authorization by Chroma.

This warranty does not apply to any products repaired or altered by persons not authorized by Chroma, or not in accordance with instructions furnished by Chroma. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost.

Chroma assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Chroma assumes no liability for secondary charges or consequential damages and in any event, Chroma's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Chroma for use of its products are based upon tests believed to be reliable, but Chroma makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Chroma any liability in connection with the sale of our products other than set forth herein.

CHROMA ATE INC.

66 Hwa-Ya 1st Rd., Hwa-Ya Technical Park, Kuei-Shan Hsiang, Taoyuan County, Taiwan Tel : 886-3-327-9999 Fax : 886-3-327-2886 e-mail: <u>chroma@chroma.com.tw</u> http ://www.chromaate.com

Material Contents Declaration

The recycling label shown on the product indicates the Hazardous Substances contained in the product as the table listed below.

<Table 1>

	Hazardous Substances							
Part Name	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated Biphenyls	Polybromodiphenyl Ethers		
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE		
РСВА	0	0	0	0	0	0		
CHASSIS	0	0	0	0	0	0		
ACCESSORY	0	0	0	0	0	0		
PACKAGE	0	0	0	0	0	0		

"O" indicates that the level of the specified chemical substance is less than the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

" \times " indicates that the level of the specified chemical substance exceeds the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

Disposal

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new one, the retailer is legally obligated to take back your old appliances for disposal at least for free of charge.

<Table 2>

	Hazardous Substances							
Part Name	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated Biphenyls	Polybromodiphenyl Ethers		
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE		
РСВА	×	0	0	0	0	0		
CHASSIS	×	0	0	0	0	0		
ACCESSORY	×	0	0	0	0	0		
PACKAGE	0	0	0	0	0	0		

"O" indicates that the level of the specified chemical substance is less than the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

" \times " indicates that the level of the specified chemical substance exceeds the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

- 1. Chroma is not fully transitioned to lead-free solder assembly at this moment; however, most of the components used are RoHS compliant.
- 2. The environment-friendly usage period of the product is assumed under the operating environment specified in each product's specification.

Disposal

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new one, the retailer is legally obligated to take back your old appliances for disposal at least for free of charge.

Chroma Chroma Chroma

For the following equipment :

Wound Component EST Scanner

(Product Name/ Trade Name)

19035-ML, 19035-L, 19035-M, 19035-S, 19035, Hybrid 2000

(Model Designation)

Chroma ATE Inc. (Manufacturer Name)

66 Hwaya 1st Rd., Kueishan Hwaya Technology Park, Taoyuan County 33383, Taiwan

(Manufacturer Address)

Is herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility (2004/108/EC), Low-voltage Directive (2006/95/EC). For the evaluation regarding the Directives, the following standards were applied :

EN 61326-1: 2006

EN 55011:1998/A1:1999/A2:2002 Class A, EN 61000-3-2:2006,

EN 61000-3-3:1995/A1:2001/A2:2005, IEC 61000-4-2:1995/A1:1998/A2:2000,

IEC 61000-4-3:2002, IEC 61000-4-4:2004, IEC 61000-4-5:1995/A1:2000,

IEC 61000-4-6:2003, IEC 61000-4-8:1993/A1:2000, IEC 61000-4-11:2004

EN 61010-1: 2010(Edition 3.0)

The following importer/manufacturer or authorized representative established within the EUT is responsible for this declaration :

Chroma ATE Inc.

(Company Name)

66 Hwaya 1st Rd., Kueishan Hwaya Technology Park, Taoyuan County 33383, Taiwan

2012.05.30

(Date)

(Company Address)

Person responsible for this declaration:

Mr. Benjamin Huang

(Name, Surname)

T&M BU Division Vice President

(Position/Title)

Taiwan

(Place)

en/amin (Legal Signature)

Unpacking for Check & Inspection

Before shipment, this instrument was inspected and found to be free of mechanical and electrical defects. As soon as the instrument is unpacked, inspect for any damage that may have occurred in transit. Save all packing materials in case the instrument has to be returned. If damage is found, please file claim with carrier immediately. Do not return the instrument to Chroma without prior approval.

Standard Package of 19035-L

Item Name	Qty	Description
19035-L Main System	1	19035-L Main System
Power Line	1	Power cord
3P – 2P Converter	1	Power corder converter
Test Cable (1)	1	1M HV Lead with RED clips
Test Cable (1)	1	1M LV Lead with BLACK clip
Test Cable (1)	8	1M 20kV Lead without clip
Fuse (1)	2	For 5.0A SLOW 110VAC
Fuse (2)	2	For 2.5A SLOW 240VAC
CF Memory Extension Card	1	IWT extended memory
CD of User's Manual	1	English version
Quick Start Guide	2	English version x 1, Traditional Chinese version x1

Note: When additional item is required, please inform Chroma the item name.

Standard Package of 19035-ML

Item Name	Qty	Description
19035-ML Main System	1	19035-ML Mains System
Power Line	1	Power cord
3P – 2P Converter	1	Power cord converter
Test Cable (1)	1	1M HV Lead with RED clips
Test Cable (2)	1	1M LV Lead with BLACK clip
Test Cable (3)	6	High potential test cable
Test Cable (4)	2	Low potential test cable
Fuse (1)	2	For 5.0A SLOW 110VAC
Fuse (2)	2	For 2.5A SLOW 240VAC
CF Memory Extension Card	1	IWT extended memory
CD of User's Manual	1	English version
Quick Start Guide	2	English version x 1, Traditional Chinese version x1

Note: When additional item is required, please inform Chroma the item name.

Hazard Operation Methods

1. Do not touch the testing area when this scanner is outputting voltage or you may get electric shock and it may cause death.

Be sure to obey the following:

- The earth wire must be connected exactly and use a standard power cord.
- Do not touch the output terminal.
- Do not touch the test wire that connected to the terminal in test.
- Do not touch any unit under test.
- Do not touch any component that connected to output terminal for charge.
- Do not touch the test unit right after the test is ended or when the output is just turned off.
- 2. The electric shock incident may occur when:
 - The earth terminal of EST Scanner is not connected properly.
 - The insulating gloves are not in use during test.
 - Users touch the test unit right after the test is done.
- 3. Remote controlling the Tester: The Hipot Tester can be remote controlled generally for high voltage output via external control signal. When performing it, it is necessary to follow the control guidelines below for safety and precautions.
 - Do not allow any accidental high voltage output that may cause hazard.
 - When there is high voltage output from the Tester, do not allow any operator or other personnel to touch the UUT, test cable or probe output and etc.
 - Remote control is generally controlled by the high voltage test bar; however, other control circuits can also be used to control it instead. The test bar is the switch for controlling high voltage output, so the connected control wire should not near the high voltage site and test cable to avoid causing any hazard.

Do not tie up the high voltage cable with RS232, Handler and GPIB control cables or other low voltage side wires. If so, it could cause the product or PC to be down or damaged.

Storage, Freight & Maintenance

Storage

When not in use, please pack the device properly and store in a suitable environment.

Freight

Please pack the device carefully before moving it. If any of the original packing material is missing, please use suitable alternative material and mark it "fragile" and "keep away from water" to avoid damaging the product.

This product is a piece of precision test equipment, so please do not drop or hit it.

Maintenance

In case of any malfunction or abnormality, please refer to the manual, or contact our local distributor for prompt service. Do not touch any parts inside the instrument to avoid any danger to yourself or damage to the product.

Revision History

The following lists the additions, deletions and modifications in this manual at each revision.

Date	Versio	on Revised Sections
Nov. 2009	1.0	Complete this manual.
Dec. 2010	1.1	Update "Material Contents Declaration"
Jul. 2012	1.2	Update "CE Declaration of Conformity"

Table of Contents

1.	Prefa	ace	1-1
	1.1	Product Overview	1-1
	1.2	Features	1-1
2.	Spec	cification (18°C~28°C RH ≤ 70%)	2-1
3.	Prec	autions before Use	3-1
4.	Oper	ration	4-1
	4.1	Front Panel	
	4.2	Rear Panel	
	4.3	Notices before Use & Operating Procedure	
	4.4	Setting SYSTEM	
	4.4.1	Entering the SYSTEM Setting Screen	
	4.4.2	Setting TEST CONTROL	
	4.4.3	Setting SYSTEM CONFIG	
	4.4.4	Setting KEY LOCK	
	4.4.5	Setting Change Password	
	4.4.6	Setting CALIBRATION	
	4.4.7	Setting ERROR LOG	
	4.5	Managing Memory for Programs	
	4.5.1	Entering the Memory Screen	
	4.5.2	Storing the Memory	4-12
	4.5.3	Deleting the Memory	4-12
	4.5.4	Recalling the Memory	
	4.6	Setting PROGRAM	
	4.6.1	Procedure for Setting the Program	4-13
	4.6.2	Selecting the Test Mode	
	4.6.3	Description of Parameters	4-14
	4.6.4	Temperature Measurement	4-19
	4.7	Using Open/Short Offset or Correction	4-25
	4.7.1	Entering Open/Short Offset or Correction Screen	4-25
	4.7.2	Using OPEN CIRCUIT	4-26
	4.7.3	Using SHORT CIRCUIT	4-26
	4.7.4	Using SAMPLE TEST	4-27
	4.8	Setting & Using SUB Step	4-27
	4.8.1	Setting SUB Step	4-27
	4.9	Conducting the Test	
	4.9.1	Test Procedure for WVAC/WVDC/IR	
	4.9.2	Test Procedure for WVAC/WVDC/IR	4-29
	4.9.3	Test Procedure for DCR	
	4.9.4	Test Procedure for OSC	
	4.9.5	Test Procedure for IWT	
	4.9.6	Auto Range	4-33
	4.10	Scan Test	4-33
5.	Usin	g 19035-ML	
	5.1	Precautions before Use	
	5.2	Setting PROGRAM	
	5.2.1	Connecting & Setting Diagram of Withstand Voltage Test Mode	
	5.2.2	Connecting & Setting Diagram of DCR Test Mode	
	5.2.3	Connecting & Setting Diagram of IWT Test Mode	
	5.2.4	Connecting & Setting Diagram of OSC Test Mode	5-5

6.		DLER Interface (Option)	6-1
	6.1	Introduction	
	6.2	Specification	6-1
	6.2.1	Driving Capability	6-1
	6.2.2	Pin Assignment	6-1
	6.3	Example of External Control Circuit	6-3
	6.3.1	Example of Using Internal Power Supply	6-3
	6.3.2	Example of Using External Power Supply	6-4
	6.4	Timing Diagram	
7.	A 1 Q (0351 8CH to 16CH Scan Box (Option)	7_1
1.	7.1	Introduction	
	7.2	Front & Rear Panel of A190351	7-1 7_1
	7.3	Specification of A190351 8Ch to 16Ch Scan Box	
	7.4	Connecting 19035-L & A190351	
	7.4.1		7-5 7_4
_			
8.	_	32/GPIB Interface	-
	8.1	Introduction	-
	8.2	RS232 Interface	
	8.2.1	Specification	
	8.2.2	Command Format	
	8.2.3	Connector	
	8.2.4	Connection	
	8.3	GPIB Interface (Option)	
	8.3.1	Applied Standard	
	8.3.2	Interface Capability	
	8.3.3	Interface Message	
	8.3.4	Command Format	
	8.4	Structure of Remote Interface	
	8.5	Commands for Remote Interface	8-5
	8.5.1	Commands Summary	8-5
	8.5.2	Command Description	8-14
	8.6	Error Messages	8-34
9.	Calib	pration Procedure	9-1
•	9.1	Entering the Calibration Screen	
	9.2	Voltage Calibration.	
	9.2.1	Calibrating ACV	
	9.2.2	Calibrating OSCV	
	9.2.3	Calibrating DCV	
	9.3	Current Calibration	
	9.3.1	Calibrating ACA Current	
	9.3.2	Calibrating DCA Current	
	9.4	Insulation Resistance (IR) Calibration	
	9.5	DC Resistance Calibration	
	9.5.1	DC Resistance Calibration (19035-L DCR 2/4-Terminal)	
	9.5.1		
	9.5.2 9.6	DC Resistance Calibration (19035-ML DCR 4-Terminal)	
	9.6.1	Calibrating AC ARC	
	9.6.2	0	
	9.7	When the Calibration is Done	
	9.8	Remote Calibration Command	
	9.8.1	Command Line	
	9.8.2	Command Summary	9-35

	g Impulse Winding Tester	
10.1 10.2	Features & Functions Introduction to Impulse Test	
10.2	Specification	
10.3	Acceptance (OK) / Rejection (NG) Detection	
10.5	Waveform Resolution	
11. Nam	es & Functions	11-1
11.1	Front Panel	
11.2	LCD Screen	11-2
12. Prep	paration before Use	12-1
12.1	Main Screen	12-1
12.2	Menus	12-2
13. MAN	IUAL Operation	13-1
13.1	Setting the Scanning Speed [WIDTH]	13-1
13.2	Setting Pulse Voltage – [1] Key [VoltSet 1]	13-2
13.3	Setting Pulse No. – [2] Key [PulseSet2]	
13.4	Setting Initial Master Waveform – [F1] Init.Set>	13-2
13.5	Setting Test Condition [3] [JudgeSet3]	
13.6 13.7	[START] Switch The Threshold of Flutter	
13.7	The Impulse Numbers to be Applied	
13.9	Pre-magnetization (Dummy Pulse)	
13.10	Caution for Settings	
14. Usin	g MASTER	14-1
14.1	Loading the Master Data [F1] Load >	14-1
14.2	Saving the Master Data [F2] Save >	14-2
14.3	Deleting the Master Data [1] [FileCler1]	14-2
14.4	Clearing the Master Page [2] [PageCler2]	
14.5	Switching the Master Page [3] [PageInc.3]	14-3
15. Usin	g AUTO Mode – GO/NG Test	15-1
15.1	Test Range Confirmation [1] [Dsp.Lmt.1]	15-1
15.2	Laplacian Sub-Window [0] [Dsp.Lpl.0]	15-1
16. Test	Result Statistics Display	16-1
16.1	Clearing the Statistics [1] [Clear 1]	16-1
17. Setti	ing the System	17-1
17.1	Setting the System Date/Time [1] [SetTime 1]	17-1
17.2	Setting the LCD Screen Color [2] [SetColor2]	
17.3	Start-up Setting for AUTO Mode [4][AutoStr.4]	
17.4	Setting the Buzzer [5] [Buzzer 5]	17-2
17.5	Monitoring External I/O Signals [6] [I/O Test6]	
17.6	Setting Baudrate [7] [Baudrate 7]	
17.7	Reserved for Expansion [8][17-2
17.8	Formatting Memory Card [9] [CF-Init.]	
17.9	System Maintenance Mode [0] [System 0]	
	u for CF Memory Card	
18.1	Memory Card Menu	18-1
18.2	Loading the Waveform [F1] Load >	18-2
18.3	Saving the Waveform [F2] Save >	10-2

18.4 18.5 18.6 18.7 18.8	Deleting the Waveform [1] [FileCler[1] Clearing the Memory Page [2] [PageCler[2] Switching the Memory Page [3] [PageInc.[3] Extended CF Page (Page 4) [5] [CardFile[5] Cautions for Memory Card	18-2 18-2 18-2
19. Misc	ellaneous Info	19-1
19.1	Message List	
19.2	Periodic Maintenance	
19.3	System Default (All Reset)	19-1
19.4	Self Test	19-2
19.5	Sampling Speed – the Width	
19.6	The Time Scale of Display Screen	19-2
19.7	Data Display of Laplacian	19-2
20. Oper	ating Procedure	20-1
20.1	Setting Master Waveform (Using Good Coil)	
20.2	Saving the Master Waveform	
20.3	Executing Auto Test (Using Test Coil)	
21. Appl	ication Techniques	21-1
21.1	Criteria Change for the Existing Master Waveform	

1. Preface

1.1 Product Overview

This automatic Wound Component EST (Electrical Safety Test) Scanner is an equipment designed to perform the tests of AC/DC Hipot, IR (Insulation Resistance) and Impulse Winding automatically for wound components.

It has AC5kV/DC6kV high voltage output that meets the withstand voltage test requirement of wound components for outputting maximum current up to AC 30mA/DC 10mA. Its IR insulation resistance ranged from $0.1M\Omega$ to $50G\Omega$ with voltage output up to 5kV is able to test if the insulation resistance of wound components meets the standard. In addition to measuring the electrical characteristic of wound components, the DC Resistance test can also check the connection before performing the safety withstand voltage test.

The Wound Component EST Scanner uses a clear display to show all settings, time, current, voltage, resistance and memory no., etc without the need to memorize the parameters set beforehand.

The Wound Component EST Scanner has equipped the device to identify pass or fail products as well as to output signals of test result and to remote control other devices. It has RS232 interface that is of advantage to automatic test system with optional GPIB/HANDLER interface available for selection. This EST Scanner equipped with assorted devices mentioned above is capable of performing highly efficient and accurate tests for wound components.

1.2 Features

Diverse Tests

The 19035-L/19035-ML Wound Component EST Scanner is able to use each test function such as Withstand Voltage test for AC (WVAC), Withstand Voltage test for DC (WVDC), Insulation Resistance (IR) test, DC Resistance (DCR) test and Open/Short Check and Impulse Winding Test (IWT) separately.

OSC (Open/Short Check)

The EST Scanner has built-in OSC function to check if there is any Open (bad connection) or Short (DUT shorted) occurred during test. It may cause the Fail product to be identified as Pass if Open occurs. If Short is detected and resolved early when occurred, it can reduce the damage to fixture and save the test cost.

Clear Display

The EST Scanner has made a clearest design for display. All programs for setting such as test voltage, current state, test readings, test steps and test state are able to be viewed from the LED display directly.

High/Low Limit Comparison for Pass/Fail Products

The EST Scanner has been designed to do High/Low Limit comparison for the DUT (Device Under Test). This function is available in Hipot test, Insulation Resistance test or DC resistance test. The low limit comparison for leakage and high limit comparison

for insulation are used to test if there's any bad connection or loose test wire that causes misjudgment.

Remote Control

The EST Scanner is able to extend the [START] and [STOP] signals to HANDLER CARD for controlling externally. It also can send the test results to external through this interface as the response device for parts process.

Change Voltage Ramp Time

This instrument has [RAMP] function that can set the time required for voltage rises from zero to set value.

Change Voltage Fall Time

This instrument has [FALL] function that can set the time required for voltage falls from the set value to low when test time ends.

Auto Switch Leakage Current Test Range

The current meter ranges for withstand voltage test in this Scanner has two ranges for AC: 0~2.999mA and 3.00~30.00mA, and three ranges for DC: 0.0~299.9uA, 0.300~2.999mA and 3.00~10.00mA. If the tested current is low, the software can be used to switch the current range to low range automatically for resolution improvement before the test ends as need.

An option of GP-IB/HANDLER/Temperature Compensation 3 in 1 interface is available for purchase.

Impulse Winding Test

The Impulse Winding Test function of EST Scanner is able to do impulse winding test for wound components. Different STEPs can call different main wave data that saved in the *Impulse Winding Tester* for multiple continuous tests that is to recall different golden sample waveforms.

- The EST Scanner has 50 sets of memories and each set contains up to 20 test steps.
- A full function front panel calibration is provided.

DCR Mode Temperature Compensation

Since the wire resistance will change following the temperature, the resistance measurement needs to add the temperature as one of the test condition. The function of temperature compensation is to calculate the resistance at another temperature from the temperature and resistance already known. It is frequently used to convert the wire resistance under different temperature.

2. Specification (18°C \sim 28°C RH \leq 70%)

Model	19035-L	19035-ML		
Mode	ACV/DCV/IR / DCR-8CH/IWT	ACV/DCV/IR / DCR-16CH/ IWT		
Impulse Winding Test (Layer Short)	Internal standard	Internal standard		
Channel Programming	H/L/X in 8CHs	H/X in CH 1,2,3,5,6,7. L/X in CH 4,8.		
Withstanding Voltage Test				
Output Voltage:	AC: 0.05-5.0 kV, steps 0.002kV, DC: 0.05-6.0 kV, steps 0.002kV. Load Regulation: \leq (1% of setting AGC ON Voltage Accuracy: \pm (1% of setting	g + 0.1% of full scale), Rated load,		
Output Voltage monitor	V-monitor: ± (1% of reading + 0.7			
Cutoff Current	AC:0.01mA~30mA(note1), DC:0 resolution(note1) Current Accuracy: ± (1% of read AC real current accuracy: ± (1% +5counts)	ing + 0.5% of range)		
Current Display	< 300uA : 0.1uA~2 < 3mA: 0.001mA	Hi limit settingDisplay Range< 300uA :		
Flashover(ARC) Detection <note2></note2>	AC: 1mA – 15mA, DC: 1mA – 10	0mA, resolution 0.1mA		
ARC Current Display	0.1mA~15.0mA , OFF			
Ground Fault Interrupt leakage current (for WVAC only)	AC: 0.25mA~0.75mAAC, ON/C	0FF selectable		
Test timer <note3></note3>	Test time: 0.3 – 999 sec., and Co Ramp timer: 0.1– 999 sec., and			
Insulation Resistance mea	asurement			
Output Voltage:	DC: 0.05-5.0 kV, steps 0.002kV Load Regulation: ≤ (1% of settin AGC ON Voltage Accuracy: ± (1% of setti	ng + 0.1% of full scale), Rated load, ng + 0.1% of full scale)		
Output Voltage monitor	V-monitor: ± (1% of reading + 0.	1% of full scale), 2V resolution		
Measurement Accuracy (RH≦60%, < 2 channels ON)	>1000V: $1M\Omega \sim 1G\Omega$: ± (3% of reading + 0 $1G\Omega \sim 10G\Omega$: ± (7% of reading + $10G\Omega \sim 50G\Omega$: ± (10% of reading ≥ 500V and ≤1000: $0.1M\Omega \sim 1G\Omega$: ± (3% of reading + $1G\Omega \sim 10G\Omega$: ± (7% of reading + $10G\Omega \sim 50G\Omega$: ± (10% of reading + $10G\Omega \sim 1G\Omega$: ±[3% of reading +	2% of full scale) g + 1% of full scale) + 0.1% of full scale) 2% of full scale) g + 1% of full scale)		

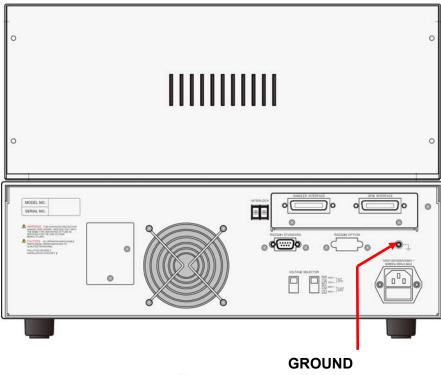
Test timer <note3></note3>	Test time: 0.3 – 999 sec., and Continuous	
	Ramp timer: 0.1–999 sec., and OFF	
DC Resistance measure		
Test signal:	< DC 10V, < DC 140mA	
Test range and accuracy	2 Terminals measure(only for 19035, 19035-L, 19035-S)	
	Range Measurement Accuracy	
	10Ω	
	100Ω	
	$1k\Omega \pm (2\% \text{ of reading } \pm 0.5\% \text{ of range})$	
	<u>10kΩ</u> 100kΩ	
	Test range: $50m\Omega \sim 500k\Omega$	
	* Display range up to $500k\Omega$ in $100k\Omega$ range, $100k\Omega$ ~	
	500kΩAccuracy is $\pm(2\% \text{ of reading} + 0.5kΩ.)$	
	** Measurement accuracy is only correct while Zero correction	
	is well performed.	
	4 Terminals measure	
	Range Measurement Accuracy	
	$1\Omega \pm (0.5\% \text{ of reading}+0.5\% \text{ of range})$	
	<u>10Ω</u> 100Ω	
	100Ω 1k Ω ± (0.5% of reading+0.05% of range)	
	100kΩ	
	* Display range up to 500k Ω in 100k Ω range, 100k Ω ~	
	500k Ω Accuracy is ±(0.5% of reading + 0.5k Ω .)	
	** Measurement accuracy is only correct while Zero correction	
	is well performed.	
Test terminal:	8 ports for 2 terminals / 4 ports for 4 terminals (with Zero correction)	
	Test time:OFF,KEY,0.1~999. (F4 is off/key)with judgment during the	
	test.	
Test timer	OFF is for no time (H/W control).	
	DWELL: 0.1~999, OFF(H/W control)	
	Timer accuracy : ± (0.01% + 0.05 sec)	
Impulse Winding Test		
Connection:	Input from rear panel, 10kV peak maximum.	
Control:	RS232C interface, 19035 functions as a controller.	
Control item	Start trigger and Pass/Fail tested result fetch.	
8 ports scanning with retu		
Output level:	10kV peak to Return terminal maximum.	
Test port:	19035/19035-L/19035-S: 8 ports, HV or Return connection	
	programmable for each test sequence (for WV, IR, DCR, OSC or IWT	
	testing).	
	19035-M/19035-ML:16 ports, 6 HV and 2 Return connection	
	programmable for each test sequence (for WV, IR, DCR, OSC or IWT	
	testing).Others ports for DCR mode.	
OSC – Contact Check		
Test voltage level:	Less than ac 100V	
Test frequency:	600Hz	
No contact judge:	Measured capacitance comparison.	
Other functions		
Display:	240 x 64 dot matrix, blue, LED back light.	

Compensation (Corre	ect):
Open Circuit:	Leakage current offset compensation for WVAC, WVDC, and IR
	testing
Short Circuit:	DC resistance offset compensation for DCR measurement
Sample Test	Master coil test for IWT mode.
PASS/FAIL System:	
Indication, Alarm:	PASS : (Short Sound)
, -	FAIL : High/Low Fail (WV, IR, DCR)
	ARC Fail (WV)
	GFI Fail (WV, ÍR)
	Open/Short Fail (OSC)
	IWT Fail /DWX ERROR (IWT)
Memory Storage	
Save/Recall:	50 instrument setups with up to 20 test steps can be stored into and
	recalled from the internal memory.
Key lock:	Front panel keys can be locked to prevent undesired operation.
□ Interface	
GPIB (Optional):	Standard: Complies with IEEE488.1 and 488.2. The programming
,	language is SCPI.
	Data buffer: One set of tested values and comparator decision results
	can be stored and output.
RS232(Standard*1,	Standard: RS232, The programming language is SCPI.
option*1):	Data buffer: One set of tested values and comparator decision results
	can be stored and output.
Handler interface (Op	tional):
24 pins connector, All inp	ut/output are negative true logic and optically-isolated open collector
signals (General-speed p	hoto-coupler used). All outputs must be pulled-up with 22k resistor to
+Vext (external power su	pply). All inputs optic-diode must be series with current limit (10mA \pm
4mA for +3V \sim +26V) circ	uit.
Judge result (O/P):	Step number: 5 bits (/STN4, /STN3/STN0)
	Step tested result: Pass/Fail, Hi, Lo, ARC fail, IWT fail, System error,
	EOS, EOT
Sequence control:	Start trigger (I/P): Falling edge trigger.
	Stop Testing (I/P): Low active.
	End of step (O/P): Low active.
	End of test (O/P): Low active.
Power supply	Internal
	+Vint: 5V, 40 \sim 60mA limit current.
	Common Int.
	External
	+Vext: +3V~+26V allowable.
	Common Ext.
Indication, Alarm	PASS(short Sound)
	Fail: Hi, Lo, ARC, IWT
	System error(GFI,DWX ERROR,OUTPUT Fail)
	(Long Sound)
Interlock:	2 pins connector, pin1 pull-up to digital +V source with 4.7kohm
	resistor, and pin 2 tied to digital GND.
Ambient Temperature	and Relative Humidity
Specifications range	18 to 28°C (64 to 82°F), ≤ 70% RH.
Operable range	Maximum relative humidity 80% for temperature up to 31°C
	(88°F).Decreasing linearly to 50% relative humidity at 40°C (104°F)

Storage range	-10 to 60°C (-14 to 140°F), ≤ 80% RH.			
Power Requirement				
Line Voltage	AC 100V, 120V, 220V ± 10%, 240V +5 -10%			
Frequency	50 or 60 Hz			
Power	No load: < 100VA			
Consumption	With rated load: <650VA			
Dimension	430 W x 301 H x 470 D mm(19035-L \ 19035-ML)			
Weight	<30kg (19035-L/19035-ML)			
SAFETY				
Ground Bond	Less than 100m Ω at 25Amp, 2sec			
Hi-Pot L + N to	Less than 10mA at WVAC 1.5kV, 60Hz, 3sec no flashover happen			
Earth:	(ARC level < 8mA, tested by Chroma 19032)			
Insulation L + N to	Greater than 20M Ω at 500V dc, 2 sec.			
Earth:				
Line leakage current:	Less than 3.5mA at Vin max (132V at 120 selected voltage), normal			
	and reverse.			

- **Note1** : AC set over 100VA, DC set over 40VA the maximum operating time is 60 seconds, and the same as rest time. If the period is 1/2 duty, for full rating output, the line input range is +10%, -0%.
- **Note2** : Validation point is 2.5kV with a $500k\Omega$ resistor.
- **Note3** : The minimum testing time arrives at 90% output voltage specification(NO load). Timer accuracy : \pm (0.01% + 0.05 sec)

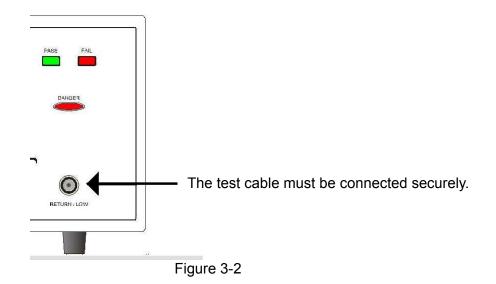
3. Precautions before Use


The Wound Component EST Scanner can output up to 6kV high voltage for external test. Accidents may occur or even cause death if using this Scanner incorrectly or in the wrong way. Thus for safety sake, be sure to read the precautions in this chapter to avoid any accidents from happening.

1. Electric shock

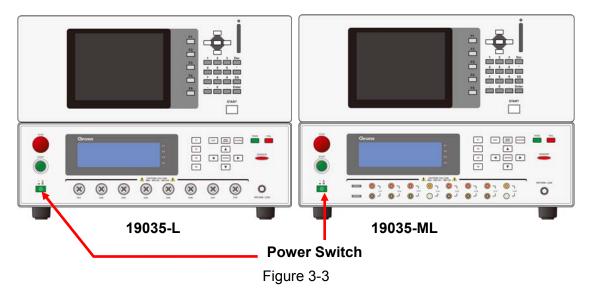
To prevent the incident of electric shock from occurring, it is suggested to wear the insulated rubber gloves before using the EST Scanner for electricity related tasks.

2. Grounding


A safety ground terminal is located at the rear of the Scanner chassis; please use a proper tool to ensure it is grounded properly. If not it would be very dangerous when the power circuit or the connection cable of any device shorts with ground terminal as the chassis may contain high voltage. Anyone who touches the device in this case may cause electric shock. Therefore, it is necessary to connect the safety ground terminal to earth properly as the arrow in Figure 3-1 shows.

3. Connecting test cable to RTN/LOW terminal

As the arrow in Figure 3-2 shows, connect the test cable to RTN/LOW terminal. It is necessary to check if the test cable is connected all the time when the Scanner is in use. When connecting a test unit with test cable, connect the RTN/LOW test cable to the test unit first. When the host RTN/LOW terminal is connected, it is very dangerous if the test cable on RTN/LOW terminal is not connected correctly or falls as the entire unit under test may full of high voltage.



4. Connecting the test cable to high voltage output terminal When the RTN/LOW test cable is connected, follow the steps below to connect the high voltage output cable.

- Press [STOP].
- Ensure the DANGER indicator is not on.
- Short the test cable of RTN/LOW and high voltage output to make sure there is no voltage output.
- Plug in the high voltage test cable to high voltage output terminal.
- At last connect the RTN/LOW test cable to the unit under test and then connect high voltage test cable.

5. End the test

When the test is end or the Scanner is not in use or is in use but needs to leave it unattended for a while, it is necessary to toggle the power switch to O (i.e. to shut off the power) as Figure 3-3 shows.

6. Hazard areas when the Scanner is in test mode

When the Scanner is in use, touching the areas of DUT, test cable, probe and output terminal that contain high voltage is a very dangerous thing.

Do not touch the alligator clip on the test cable as Figure 3-4 shows. When the host is in test state the insulation of rubber shield on it is not enough; therefore it is hazardous to touch it.

Do not touch here when outputting high voltage.

Figure 3-4

7. Ensure the test is done

Sometimes the user might need to touch the high voltage areas such as DUT, high voltage test cable or output terminal etc. due to configuration or test required change. In that case, please make sure the power switch is turned off.

Being an insulation resistance test object the DUT after test may full of high voltage; therefore it is necessary to read the description of item 8 and 9 for execution.

<--- CAUTION Charging when doing insulation resistance test >>>

8. Charging

When doing insulation resistance test, the DUT, capacitor, test cable, probe and output terminal, even the Scanner itself may full of high voltage. The charged voltage may need some time to discharge completely after turning off the power switch. It is necessary to follow the instruction described above for actions. Do not touch any places that may cause electric shock especially when the power is just turned off.

9. Ensure the charged voltage is fully discharged

The time required for fully discharging the voltage depends on the test voltage applied and the features of DUT. Assuming the high voltage added on the DUT equals the high voltage added to a 0.01uF capacitor and paralleled to a 100M Ω resistance circuit. When the test voltage is 1000V, then it requires approximately 3.5 seconds for the voltage that added to test and on DUT to fall to 30V under after turned off the power. For 500V test voltage, it requires about 2.8 seconds. Assuming the time constant of a DUT is already known, the way described above can be used to calculate the time required for voltage falling to 30V under after powered off by timing the time constant multiple to the time decreased to 30V under as Figure 3-5shows.

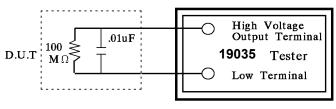


Figure 3-5

< Formula > Test Voltage * e $^{-t/RC}$ = Remaining Voltage

Ex : 1000V * e ^{-t/RC} = 30V -t / RC = ln 0.03 -t / RC = -3.5 t = 3.5 sec

10. Remote controlling the Scanner

The EST Scanner can be remote controlled generally for high voltage output via external control signal. When performing it, it is necessary to follow the control guidelines for safety and precautions.

- Do not allow any accidental high voltage output that may cause hazard.
- When there is high voltage output from the Scanner, do not allow any operators or other persons to touch the DUT, test cable or probe output and etc.

11. **CAUTION** Turning on or off the power switch

Once the power switch is turned off, it needs to wait for a few seconds to turn it on again. Do not power it on and off continuously to avoid occurring errors. It is very dangerous to power it on and off continuously when in high voltage output state in particular. When turning on or off the power, the high voltage output terminal cannot connect to any object to avoid the hazard caused by abnormal high voltage output.

12. Other notices

Do not short-circuit the output line, grounding wire, communication cable or other device's grounding wire or AC power to avoid charging the entire Scanner with dangerous voltage. To short-circuit the terminals of high voltage output and RTN/LOW, it is necessary to ground the Scanner chassis to earth properly.

<<< Emergency Case >>>

13. Process for emergency case

To avoid causing bigger hazard when in emergency situations like electric shock, DUT or Scanner burnout, please perform the steps below:

- First cutoff the power switch.
- Second unplug the power cord.

<<< Troubleshooting >>>

14. Problems occurred

Problems occurred in the following situation are very dangerous. The output terminal may still have high voltage output even the [STOP] key is pressed; therefore, the user should be extremely careful when dealing with it.

- The DANGER LED indicator keeps on when [STOP] key is pressed. •
- The DANGER LED indicator is on but the voltage meter has no readings. •
- When the above situation occurs, shut down the power and unplug the AC power cord immediately. Do not use the device again as failure is awfully hazardous. Please send the hardware back to Chroma or its distributor for repair service.

15. DANGER Indicator failure

When pressing the [START] key the voltage meter has readings but the DANGER LED indicator is still off, it means the indicator may be broken. Please power off the hardware and replace it with another device, then send the broken one back to Chroma or its distributor for repair service.

16. Be aware of the following when using the Scanner for long hour in normal state

- If the high limit is set to 20.00mA (for hipot test), be aware of its temperature change.
- If the ambient temperature exceeds 40°C, stop using it temporarily until the temperature drops to normal. Be sure to check the room temperature before use.
- **17.** There are four types of AC INPUT power applicable for this Scanner. Switch the voltage selector on the rear panel to a proper voltage that used locally.

When plugging in the power cord, make sure the inputted AC power is the same as the power range indicated on the rear panel and the fuse is replaced with correct one. The table below lists the voltage and the fuse it uses.

Label	Fuse
100V	5A Slow/250V
120V	5A Slow/250V
220V	2.5A Slow/250V
240V	2.5A Slow/250V

Check the voltage in use before replacing the fuse. Also to avoid electric shock the fuse should be changed when the power cord is not plugged in. Use a flat screwdriver to pry the fuse holder inside the power socket and remove the fuse to replace with a new one by pushing it in gently, and then push the power socket back to its position.

AWARNING Be sure to use the fuse with correct specification or it may cause hazard.

- **18.** This Scanner is normally operated under AC power. If the selected voltage range for local power supply is unstable, it may cause the device to work inaccurately or abnormally. Thus, please use appropriate equipment such as a power supply regulator to convert it to a suitable power source.
- **19.** This Scanner uses a power transformer with 500VA or above and when the DUT draws a great deal of current, the current (about 10amp) may flow in for more than 10ms before judging for the defect item and cutting off the output current. The same situation may

occur before test, thus it is necessary to watch out the power cord capacity and the connecting cables used for other instruments or devices.

20. Storage

The storage temperature for the Scanner is from -10°C to 60°C, ≤ 80 % RH. If it is not in use for a long time, please pack it with its original package for storage. For proper test and safety measures, do not place the Scanner under direct sunlight, high temperature, trembling, humid or dusty area.

21. Warming up

The Scanner is activated when power is on; however, in order to meet the specifications for accuracy please warm it up for 15 minutes or above.

22. Safety symbols

The terminal may output lethal voltage. Please read all precautions clearly.

There are detail descriptions in the User's Manual. Please read it to get detail information.

The protection ground terminal to prevent electric shock due to leakage to chassis. It is necessary to connect this ground terminal to earth before using the Scanner.

A waning label to avoid any improper use due to procedure, application or other reasons that may cause injury or death to human.

A caution label to avoid any improper use due to procedure, application or other reasons that may cause damage or bad result to the Scanner or the unit under test.

A notice label for important information on procedure, application or other areas. Please read it clearly.

23. Warning label during test

"DANGER – HIGH VOLTAGE TEST IN PROGRESS, UNAUTHORIZED PERSON KEEP AWAY"

4. Operation

4.1 Front Panel

This section introduces each control item and the information displayed on LCD.

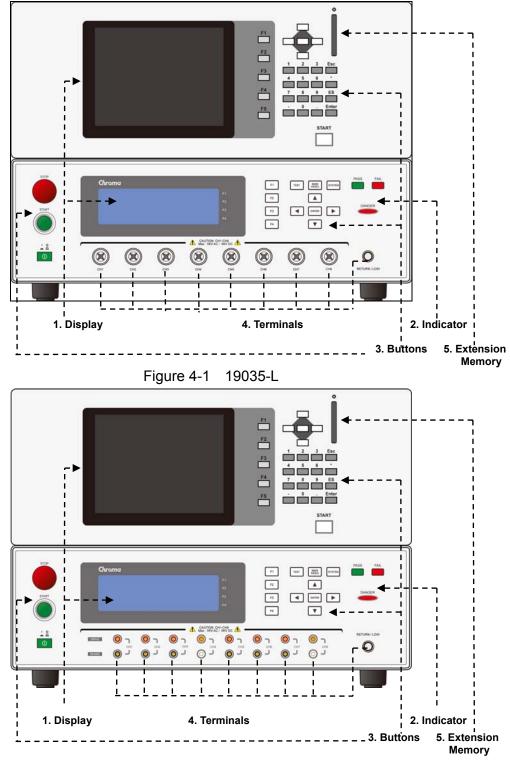


Figure 4-2 19035-ML

1. Display

STEP 1/1 WVAC	LOW	:	OFF		******	
0.050kV	ARC:		OFF	I	PROGRAM	
0.030KV	RAMP	:	OFF	-		
0.500mA	FALL	:	OFF	(CORRECT	
	REAL	:	OFF	-		
3.0S		12	34567	8	LIST	
0.00	SCAN	<u> </u>	<u> </u>			
STANDBY	MT LO	СК	CORR	ERR		
Message Line Message Indication Box Function Key Ar				unction Key Area		

Following is the enlarged display area. (See Chapter 10 for the display area of Layer short.)

Function Key Area: Different function key descriptions will appear in different screen and the mapping function keys (F1-F4) are at the right of LCD. If the description is blank, it indicates the mapping function key is invalid.

Message Line: This line of text instructs the setting method and range, also shows the test results of fail state.

Message Indication Box:

RMT	:	When this box is reversed it indicates the Scanner is in Remote state which means it is controlled by PC via GPIB/RS232 cable. At this time all buttons are invalid except [STOP], [DSP-LIST] and [LOCAL] keys.				
LOCK	:	When this box is reversed it indicates the Scanner is in parameter protection mode. "PROGRAM", "CORRECT" and the "STORE/RECALL" of MEMORY in [MAIN INDEX] as well as the "TEST CONTROL" and "CALIBRATION" in [SYSTEM] are unable to access for setting.				
CORR	:	When this box is reversed it indicates the Scanner has done the actions of				
ERR	:	open/short offset or correction. When this box is reversed it indicates there are remaining errors in the error queues.				
2. Indi	cat	ors				
DANGER LED : It is the indicator of test status. When on it means the Scanner is						

performing test when on. Do not touch the test terminals as they may contain high voltage or large current output.

PASS LED : It is the indicator for pass items. When on it means the DUT is identified as good after test.

FAIL LED : It is the indicator for fail items. When on it means the DUT is identified as no good after test. Once a fail item is identified the Scanner output will be cut off immediately and the LED will keep on until the [STOP] key on the Scanner is pressed.

3. Buttons (See Chapter 10 for the display area of Layer short.)

Power Switch STOP	:	It is the AC power switch for this Wound Component EST Scanner. It is the reset key. When pressed the EST Scanner will cutoff output immediately or return to ready-to-test state and clear all judgments. It is the test activation key. The EST Scanner is in test state when pressed, which means there is output on test terminal and the judging functions are activated at the same time.				
START	:					
F1 F2 F3 F4	:	They are function keys F1~F4. Their functions are varied when in different screen. The mapping function names are listed at the right of LCD. If the mapping area is blank it indicates the function key is invalid.				
TEST	:	It is the key to skip to main test screen.				
MAIN INDEX	:	It is the key to manage the test. Press this key can enter into the memory management screen for saving and deleting test procedures.				
SYSTEM	:	It is the key to enter the system setting screen.				
	:	They are the cursor movement keys for setting functions or editing test procedures.				
ENTER	:	It is the input confirmation key for setting functions or editing test procedures.				

4. Terminals

OUTPUT	:	It is the high potential terminal for high voltage output that is very
		dangerous. Do not touch it especially when the DANGER LED is on.
RETURN/LOW :		It is a common test terminal of low potential when doing high voltage test. It almost equals to the chassis grounding terminal.

5. Extension Memory

It is for Layer short extension memory use and the common Compact Flash (CF) can be used.

4.2 Rear Panel

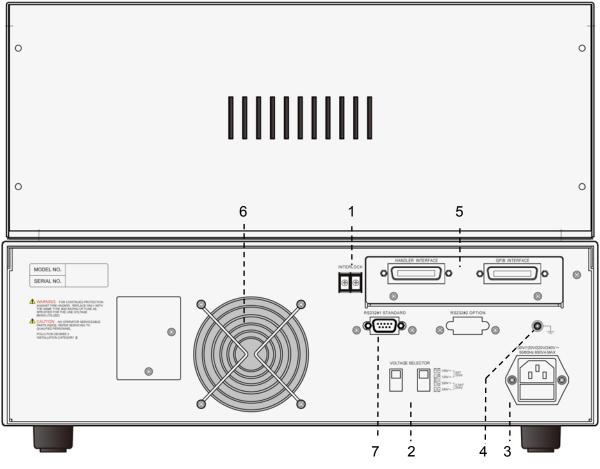


Figure 4-3

1. **INTER LOCK:** Short-circuit these two terminals can output the high voltage.

2. VOLTAGE SELECTOR

It can change the Input AC power supply of the Scanner to following 4 types:

- a. 100V AC
- b. 120V AC
- c. 220V AC
- d. 240V AC

Switch the voltage selector and change the fuse based on the AC power supply.

- **3.** AC LINE: It contains a three-wire AC power socket and a fuse holder. The AC power required by the Scanner is supplied by this power socket. For detail specification of fuse, please see Chapter 3 *Precautions before Use* or the instruction on the rear panel. A
- 4. GND: It is the safety grounding terminal. Please use an appropriate tool to connect it to earth properly. If it is not properly grounded, the Scanner chassis may contain high voltage when the power circuit or any device's cable is shorted with the grounding terminal, and it is very dangerous as anyone who touches it may cause electric shock incident. Therefore, the safety ground terminal must connect to earth properly.

5. GPIB/HANDLER INTERFACE: (Option)

These two sockets are for the optional GPIB/HANDLER/TC 3 in 1 interface card that can be purchased for this Scanner. The detail descriptions of GPIB and HANDLER interfaces are described in Chapter 6 HANDLER Interface, Chapter 7 RS232/GPIB and section 4.6.4 *Temperature Measurement (TC)*.

6. FAN: The fan is activated simultaneously when the Scanner is powered on.

7. RS232 INTERFACE#1

It is the RS232 interface socket can be used to connect PC.

4.3 Notices before Use & Operating Procedure

- 1. Before plugging in the AC power cord, make sure the power in use matches the power indicated on the rear panel and the switch is OFF.
- 2. Read the precautions described in Chapter 3 carefully and keep them in mind before power-on the Scanner.
- 3. Once the Scanner is powered on, it will start self-test. If any abnormal occurs, turn off the power switch immediately and unplug the power cord.

4.4 Setting SYSTEM

4.4.1 Entering the SYSTEM Setting Screen

1. Press **SYSTEM** in any screen will show the following:

<system setup=""></system>					
TEST CONTROL					
SYSTEM CONFIG					DOWN
KEY LOCK					
CHANGE PASSWO	RD				ENTER
CALIBRATION					
	RMT	LOCK	CORR	ERR]

Use Function Key [UP], [DOWN] or **I** to move the highlight to the item to be set. Press Function Key [ENTER] or **ENTER** to go to the setting screen of selected function.

The following table lists the setting items of System and their descriptions.

Setting Items	Description			
TEST CONTROL	It sets the related parameters for test. See Section 4.4.2 for			
	details.			
SYSTEM CONFIG	It sets the system related parameters.			
KEY LOCK	It sets the keyboard lock function.			
CHANGE PASSWORD It changes the user's password.				

CALIBRATION	It sets the calibration related function.
ERROR LOG	It logs the errors messages generated when connecting with PC.
ABOUT	It shows the version number.

4.4.2 Setting TEST CONTROL

In SYSTEM SETUP screen, move the highlight to TEST CONTROL and press Function Key [ENTER] or **ENTER** to go to TEST CONTROL setting screen as shown below:

<test control=""></test>		
		DIGIT UP
PASS HOLD	: 0.5S	
ACV FREQUENCY	: 60Hz	DIGIT DN
SOFTWARE AGC	: ON	
WV AUTO RANGE	: OFF	DIGIT
GFI	: ON	
0.2 - 99.9S	RMT LOCK CORR ERR	EXIT

When in TEST CONTROL screen, press \blacksquare v to move the highlight to the item to be set and press Function Key F1 F2 F3 F4 to set the mapped functions.

The following table lists the setting items of TEST CONTROL and their descriptions.

Setting Items	Range	Default	Description
PASS HOLD	0.2~99.9S	0.5	It sets the time the beeper sounds when the DUT is judged as PASS.
ACV FREQUENCY	50Hz / 60Hz	60Hz	It sets the frequency of output voltage when doing AC withstand voltage test.
SOFTWARE AGC	ON/OFF	ON	It sets the software AGC function to be on or off.
WV AUTO RANGE	ON/OFF	OFF	It sets the range auto change function for withstand voltage test to be on or off.
GFI	ON/OFF	ON	It sets the Ground Failure Interrupt function to be on or off.
AFTER FAIL	RESTART / CONTINUE / STOP	STOP	It sets the action after the test step is judged as FAIL. When set to RESTART, it will stop test after detected FAIL without pressing [STOP] and press [START] can begin the test. When set to CONTINUE, it won't stop test after detected FAIL. It will continue the steps afterwards. When set to STOP, it will stop test after detected FAIL and it is necessary to press [STOP] first and follow by [START] to begin the test.

	ON/OFF	ON	When set to ON, it will judge high limit during ramp time when in DC mode. When set to OFF, it won't judge high limit during ramp time when in DC mode.
TRIGGER DELAY	0 (OFF), 10~9999mS	OFF	It sets the time delayed after pressing the START key to begin test.
DCR BALANCE	0(OFF),0.001~ 999Ω	OFF	 When the difference of maximum and minimum DCR is larger than the setting of DCR Balance, the judgment is Balance Fail (shows on the message line.) When the difference of maximum and minimum DCR is larger than the setting of DCR Balance, the judgment is Pass.
DCR 4-TERMINAL	ON/OFF	OFF	When ON the DCR mode is in 4-terminal test mode. When OFF the DCR mode is in 2-terminal test mode.
T. COMPENSATION			It sets the temperature compensation. (The setting is invalid here. Use the submenu to modify the settings and see section 4.6.4.4 for detail description.)

4.4.3 Setting SYSTEM CONFIG

In SYSTEM SETUP screen, move the highlight to SYSTEM CONFIG and press Function Key [ENTER] or **ENTER** to go to SYSTEM CONFIG setting screen as shown below:

<system config="" control=""></system>						
		UP				
CONTRAST	: 06					
BEEPER	: LOW	DOWN				
BPIB	: UNINSTALLED					
HANDLER	: UNINSTALLED					
RS231#1	: BAUD RATE = 9600					
1 - 16		EXIT				

When in SYSTEM CONFIG screen, press **a v** to move the highlight to the item to be set and press Function Key **F1 F2 F3 F4** to set the mapped functions.

The following table lists the setting items of SYSYTEM CONFIG and their descriptions.

Setting Items	Range	Default	Description
CONTRAST	1 - 16	06	It adjusts the LCD brightness.
BEEPER	HIGH / LOW / OFF	LOW	It adjusts the beeper volume.
GPIB	UNINSTALLED / ADDRESS = 0~30	03	It sets the GPIB interface address. It shows UNINSTALLED if GPIB card is not installed.
HANDLER	UNINSTALLED / INSTALLED	N/A	It shows if the HANDLER card is installed.
RS232 #1	UNINSTALLED / 9600 / 19200 / 38400	9600	It sets the transmission baud rate of RS232 interface. It shows UNINSTALLED if RS232 card is not installed.
RS232 #2	UNINSTALLED / 9600 / 19200 / 38400	9600	It sets the transmission baud rate of RS232 interface. It shows UNINSTALLED if RS232 card is not installed.
SUB PASS	0.01 ~ 0.5S	0.10S	It is the SUB STEP execution time when the Main step is PASS. When Sub Step is skipped without test, Handle Board will send out Step Pass signal and the duration is determined by this setting.
EOS HOLD	0.01 ~ 0.1S	0.01S	It is hold time of end of step .
T. BOARD	UNINSTALLED/INSTALLED	N/A	It shows if the TEMPERATURE card is installed.
T. PROBE	NONE/PT100/PT500	N/A	It shows the type of temperature probe.

4.4.4 Setting KEY LOCK

The way to set KEY LOCK:

In SYSTEM SETUP screen, move the highlight to KEY LOCK and press Function Key [ENTER] or **ENTER** to go to KEY LOCK setting screen as shown below:

<key lock=""></key>	
LOCK KEY :	A
	В
USER PASSWORD :	
	ENTER
RMT LOCK CORR ERR	EXIT

1. In KEY LOCK screen, press Function Keys A, B to enter the PASSWORD (the default is AAAA.)

- 2. Press **ENTER** will prompt a selection window to select if to lock RECALL MEMORY. Users can use Function Keys **YES**, **NO** to select if locking the function of MEMORY RECALL as well.
- When KEY LOCK is ON, the LOCK text is reversed to indicate the host is in parameter protection mode. The MEMORY of PROGRAM, CORRECT and [MAIN INDEX] as well as the TEST CONTROL and CALIBRATION of STORE and [SYSTEM] are invalid for setting.
- 4. When setting KEY LOCK, if RECALL LOCK ON is selected, the MEMORY RECALL function is also invalid.

The way to release KEY LOCK:

If the LOCK box is reversed in power on screen, the KEY LOCK function can be released. Press **SYSTEM** to select KEY LOCK as shown below:

<key lock=""></key>	
UNLOCK KEY :	Α
	В
USER PASSWORD :	
	ENTER
RMT LOCK CORR ERR	EXIT

Use Function Keys [A], [B] to enter PASSWORD and press Function Key [ENTER], the LOCK box returns to normal indicating the KEY LOCK is cancelled.

4.4.5 Setting Change Password

Setting password for KEY LOCK:

In SYSTEM SETUP screen, move the highlight to CHANGE PASSWORD and press Function Key [ENTER] or **ENTER** to go to CHANGE PASSWORD setting screen as shown below:

<change password=""></change>	
USER PASSWORD :	A
	В
	ENTER
RMT LOCK CORR ERR	EXIT

- 1. Use Function Keys **A**, **B** to enter PASSWORD (the default is AAAA before change), and press Function Key **ENTER** will prompt a NEW PASSWORD window.
- 2. Use Function Keys A, B to enter NEW PASSWORD (maximum 10 characters), press Function Key ENTER will prompt a CONFIRM PASSWORD window.
- 3. Use Function Keys A, B to enter CONFIRM PASSWORD (same as NEW PASSWORD), press **ENTER** will prompt a message "*CHANGE PASSWORD OK!*" to indicate the password has been changed successfully. Press **EXIT** to exit the setting screen.

4.4.6 Setting CALIBRATION

In SYSTEM SETUP screen, move the highlight to CALIBRATION and press Function Key [ENTER] or **ENTER** to go to CALIBRATION setting screen as shown below:

<calibration></calibration>	
ENTER CAL. PASSWORD∶∎	А
	В
	ENTER
RMT LOCK CORR ERR	EXIT

When in CALIBRATION screen, press Function Key **F1 F2 F3 F4** that mapped to the related settings.

The following table lists the setting items of CALIBRATION and their descriptions.

Setting Items	Password	Description
Enter into Calibration	AAAB	Please refer to Chapter 9 for Calibration
Mode		Procedure related info.
Clear the settings and test	BBBBABBBBB	This function will clear all settings and test
procedures in memory		procedures in memory and return to factory
		default.

4.4.7 Setting ERROR LOG

In SYSTEM SETUP screen, move the highlight to ERROR LOG and Function Key [ENTER] or **ENTER** to go to ERROR LOG screen as shown below:

<error i<="" th=""><th>_OG></th><th></th><th></th><th></th><th></th><th></th></error>	_OG>					
1. +0	, No error					
		RMT	LOCK	CORR	ERR	EXIT

When in ERROR LOG screen it will show the error message generated during connection. Press Function Key **F1 F2 F3 F4** for the mapped function to browse the error message. The ERR box will return to normal without reverse when in ERROR LOG screen.

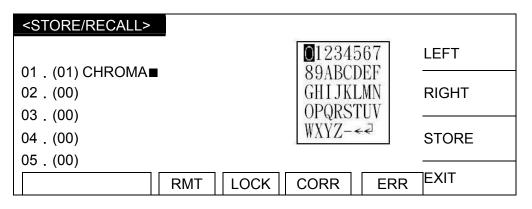
4.5 Managing Memory for Programs

4.5.1 Entering the Memory Screen

1. Press MAIN INDEX in any screen will appear the following:

<main index=""></main>		
		STORE/RECALL
	RMT LOCK CORR EF	RR

2. Press Function Key [STORE/RECALL] to go to Memory mode as shown below:

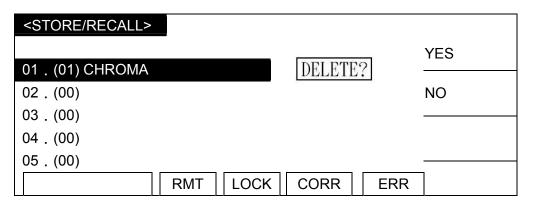

<store recall=""></store>	
	STORE
01 . (01) CHROMA	
02.(00)	RECALL
03.(00)	
04.(00)	DELETE
05.(00)	
RMT LOCK CORR ERR]

- 3. Use ▲ ▼ to move the highlight to the memory to be processed and follow the instruction of Function Key to read, save or erase that memory.
- 4. The number in parentheses means the test steps contained in the memory.

4.5.2 Storing the Memory

Follow the steps below to save the set programs into memory:

1. Use ▲ ▼ to move the highlight to the memory to be saved and press Function Key [STORE].



- 2. Use to move the cursor to select the character for memory's name and press **ENTER** to confirm the inputted character.
- 3. Use Function Key [LEFT], [RIGHT] to move the cursor to next character.
- 4. Press Function Key [STORE] will prompt a confirmation dialog box.
- Press Function Key [YES] to confirm or press Function Key [NO] to cancel it. (Note: If data is already existed in the memory, it will be overridden. Please confirm it carefully before pressing YES.)

4.5.3 Deleting the Memory

Follow the steps below to delete the programs from memory:

1. Use ▲ ▼ to move the highlight to the memory to be deleted and press Function Key [DELETE].

2. A delete confirmation dialog box is prompted. Press Function Key [YES] to confirm it or press Function Key [NO] to cancel it.

4.5.4 Recalling the Memory

Follow the steps below to recall the programs stored in memory:

1. Use I to move the highlight to memory to be recalled and press Function Key [RECALL].

<store recall=""></store>	
	YES
01. (01) CHROMA RECALL?	
02 . (00)	NO
03.(00)	
04.(00)	
05.(00)	
RMT LOCK CORR ERR	

2. A recall confirmation dialog box is prompted. Press Function Key [YES] to confirm it or press Function Key [NO] to cancel it.

4.6 Setting PROGRAM

4.6.1 Procedure for Setting the Program

1. Press Function Key [PROGRAM] in power on screen to go to PROGRAM setting screen as below:

STEP 1/2	WVDC	LOW	:	OFF	
		ARC:		OFF	INC.
VOLT :	0.050kV	RAMP	:	OFF	
HIGH :	0.500mA	DWELL	:	OFF	DEC.
TIME :	3.0S	FALL	:	OFF	
			1 2	2345678	NEW
		SCAN	:		
1 - 20	R	MT LOC	Ж	CORR ER	R NEXT 1/2

- 2. When in PROGRAM screen, use Function Keys [NEW] to add new test steps from 1 to 20.
- 3. Use Function Keys [INC.], [DEC.] to move the cursor to previous or next test step.
- 4. Press ▲ ▼ to move the highlight to other steps to be set or modified and press ENTER to confirm it.
- 5. Use Function Keys [NEXT 1/2] to switch Function Keys screen as shown below:

STEP 1/2	WVDC	LOW	:	OFF	
		ARC:		OFF	INSERT
VOLT :	0.050kV	RAMP	:	OFF	
HIGH :	0.500mA	DWELL	:	OFF	DELETE
TIME :	3.0S	FALL	:	OFF	
				1 2 3 4 5 6 7 8	NEW SUB
		SCAN	: -		
1 - 20		RMT LOO	СК	CORR	RR NEXT 2/2

- 6. Use Function Keys [INSERT], [DELETE] to insert or delete a test step.
- 7. Use Function Keys [NEW SUB] to add a sub step. When the main step is judged as Pass, it will skip the sub step; and when the main step is judged as Fail, it will continue the sub step test to get a complete judgment result.
- 8. Press Function Key [NEXT 2/2] can return to the previous Function Keys screen for setting other programs.

4.6.2 Selecting the Test Mode

1. When in PROGRAM screen, press b to move the highlight to the following position.

STEP 1	1/2	WVDC	LOW	:	OFF	
			ARC:		OFF	WVAC
VOLT	:	0.050kV	RAMP	:	OFF	
HIGH	:	0.500mA	DWELL	:	OFF	WVDC
TIME	:	3.0S	FALL	:	OFF	
				1 2	2345678	IR
			SCAN	:		
SELEC	T	NODE RI	MT LO	СК	CORR ERF	NEXT 1/3

2. Use Function Key [WVAC], [WVDC], [IR], [NEXT 1/3] to select the test mode. There are WVAC / WVDC / IR / DCR / OSC / IWT /PA available for selection. Different test mode has different programs for setting.

4.6.3 Description of Parameters

Following explains the parameters in each test mode.

Withstand Voltage AC (WVAC) Test Mode

STEP 1/1 WVAC	LOW : OFF	
	ARC: OFF	WVAC
VOLT : 0.050kV	RAMP : OFF	
HIGH : 0.500mA	FALL : OFF	WVDC
TIME : 3.0S	REAL : OFF	
	1 2 3 4 5 6 7 8	IR
	SCAN :	
SELECT MODE	RMT LOCK CORR ERR	NEXT 1/3

VOLT : It sets the voltage required for withstand voltage test.

- HIGH : It sets the high limit of leakage current.
- TIME : It sets the time required for test, 0 means continuous test.
- LOW : It sets the low limit of leakage current. The range is smaller than the leakage current high limit or OFF.
- ARC : It sets the high limit of arc, 0 means OFF.
- RAMP : It sets the time required for ramping to the set voltage, 0 means OFF.
- FALL : It sets the time required for falling to low voltage from set, 0 means OFF.
- REAL : It sets the high limit of real leakage current. The range is smaller than the leakage current high limit or OFF.

SCAN : It sets the output terminal for scan test.

Withstand Voltage DC (WVDC) Test Mode

STEP 1/1	WVDC	LOW	:	OFF	
		ARC:		OFF	WVAC
VOLT :	0.050kV	RAMP	:	OFF	
HIGH :	0.500mA	DWELL	:	OFF	WVDC
TIME :	3.0S	FALL	:	OFF	
			1 2	2345678	IR
		SCAN	:		
SELECT N	/IODE RM	IT LO	СК	CORR ERR	NEXT 1/3

VOLT HIGH	:	It sets the voltage required for withstand voltage test. It sets the high limit of leakage current.			
TIME	:	It sets the time required for test, 0 means continuous test.			
LOW	:	It sets the low limit of leakage current. The range is smaller than the leakage current high limit or OFF.			
ARC	:	It sets the high limit of arc, 0 means OFF.			
RAMP	:	It sets the time required for ramping to the set voltage, 0 means OFF.			
DWELL	:	It sets the time required for DWELL, 0 means OFF.			
		(It does not judge the high and low limit of leakage current during DWELL TIME but only when the set range is within the high limit.)			
FALL	:	It sets the time required for falling to low voltage from set, 0 means OFF.			
SCAN	:	It sets the output terminal for scan test.			

Insulation Resistance (IR) Test Mode

STEP 1/1	R HIGH	:	OFF	
	RAMP	:	OFF	WVAC
VOLT : 0.05	50kV FALL	:	OFF	
LOW : 1.0	MΩ RANGE	:	AUTO	WVDC
TIME : 3	3.0S			
		12	2345678	IR
	SCAN	:		
SELECT MODE	E RMT LO	СК	CORR ERR	NEXT 1/3

VOLT	:	It sets the required voltage for insulation resistance test.
LOW	:	It sets the low limit for insulation resistance.
TIME	:	It sets the time required for test, 0 means continuous test.
HIGH	:	It sets the high limit for insulation resistance. The value is larger than the
		insulation resistance low limit or OFF.
RAMP	:	It sets the time required for ramping to the set voltage, 0 means OFF.
FALL	:	It sets the time required for falling to low voltage from set, 0 means OFF.
RANGE	:	It sets the current test range for insulation resistance, AUTO means switching
		the range automatically. When the UUT is having Corona, it may keep swithing
		between two ranges. Use HOLD RANGE to conduct the test when it happens.

between two ranges. Use HOLD RANGE to conduct the test when it h	appens.
The table below lists the relationship between current range and resista	ance
measurement range.	

	IR Display					
Range	When voltage set to 50V~499V	When voltage set to 500V~5000V				
10mA(2.7~10mA)	0.1ΜΩ~2.4ΜΩ	0.1ΜΩ~7.7ΜΩ				
3mA (0.27~3mA)	0.1ΜΩ~7.7ΜΩ	0.1ΜΩ~24.5ΜΩ				
300uA(27~300uA)	0.1ΜΩ~24.5ΜΩ	0.1ΜΩ~49.9ΜΩ				
		50ΜΩ~245ΜΩ				
30uA(2.7~30uA)	0.1ΜΩ~49.9ΜΩ	0.1ΜΩ~49.9ΜΩ				
	50MΩ~245MΩ	50ΜΩ~499ΜΩ				
		0.50GΩ~2.45GΩ				
3uA(0.27~3uA)	0.1ΜΩ~49.9ΜΩ	0.1MΩ~49.9MΩ				
	50ΜΩ~499ΜΩ	50ΜΩ~499ΜΩ				
	0.50GΩ~2.45GΩ	0.50GΩ~4.99GΩ				
		5.0GΩ~49.9GΩ				
300nA(27~300nA)	0.1ΜΩ~49.9ΜΩ	0.1ΜΩ~49.9ΜΩ				
	50ΜΩ~499ΜΩ	50ΜΩ~499ΜΩ				
	0.50GΩ~2.45GΩ	0.50GΩ~4.99GΩ				
		5.0GΩ~49.9GΩ				
		50GΩ~245GΩ				
30nA(1~30nA)		0.1ΜΩ~49.9ΜΩ				
		50ΜΩ~499ΜΩ				
		0.50GΩ~4.99GΩ				
		5.0GΩ~49.9GΩ				
		50GΩ~500GΩ				

Note: To select an appropriate IR current range, please calculate the current by test voltage and DUT's insulation impedance, and then select the proper current range.

SCAN : It sets the output terminal for scan test.

DC Resistance (DCR) Test Mode (2-Terminal)

STEP 1/1 DCR	HIGH	:	100.0kΩ	
	LOW	:	OFF	DCR
	RANGE	:	AUTO	
	DWELL	:	OFF	OSC
TIME : OFF				
		1 2	2345678	IWT
	SCAN	:		
SELECT MODE RI	MT LOC	СК	CORR ERR	NEXT 2/3

TIME : It sets the following 3 actions for DCR TIME.

- (1) Set the test time: Use Function Keys [DIGIT], [DIGIT UP], [DIGIT DN] to set the test time required by DCR.
- (2) Set to OFF: Setting Function Keys [OFF/CONT] to OFF indicates no test time is set for DCR. The test mode ends when the host reads the DCR readings successfully.
- (3) Set to CONTINUE: Setting Function Keys [OFF/CONT] to CONTINUE indicates the DCR test will continue until the START key on panel is pressed or the /EXT_START signal on HANDLER card (OPTION) is retriggered.

HIGH	:	It sets the high limit for DC resistance. The maximum is $100K\Omega$.
LOW	:	It sets the low limit for DC resistance.

- RANGE : It sets the test range for DC resistance, AUTO means switching range automatically.
- DWLL : It sets the time required for DWELL, 0 means OFF. (When DWELL TIME is active, it does not judge the high and low limit of DCR.)
- SCAN : It sets the output terminal for scan test.

DC Resistance (DCR) Test Mode (19035-L 4-Terminal)

STEP 1/1 DCR	HIGH	:	100.0kΩ		
	LOW	:	OFF		DCR
	RANGE	:	AUTO		
	DWELL	:	OFF		OSC
TIME : OFF					
		1 2	23456	78	IWT
	SCAN	: –		_	
SELECT MODE RN	IT LOC	СК	CORR	ERR	NEXT 2/3

Note: DRIVE and SENSE have to be connected to the same terminal.

- SCAN: When SCAN1 set to H and SCAN3 set to L, it means CH1 output terminal is DRIVE+, CH3 output terminal is DRIVE-CH2 output terminal is SENSE+, CH4 output terminal is SENSE-
- The setting of DUT is using 3 sets of coil
 - STEP1 Set DCR CH1 to H, CH7 to L
 - STEP2 Set DCR CH3 to H, CH7 to L
 - STEP3 Set DCR CH5 to H, CH7 to L

DUT connecting diagram:

See section 4.6.4 for detail description of DCR mode temperature measurement function.

Open/Short	Check ((OSC)	Test Mode
	Olicch		I COL MIQUE

		-			
STEP 1/1 OSC	OPEN	:	50%		
	SHORT	:	300%		DCR
					OSC
		1 2	234567	78	IWT
SELECT MODE RM	SCAN IT LO	: – - СК	CORR	- – ERR	NEXT 2/3

OPEN : It sets the OPEN condition for test result judgment. (Compare it with the test reading and the read standard capacitance [Cs].)

SHORT : It sets the SHORT condition for test result judgment. (Compare it with the test reading and the read standard capacitance [Cs].)

SCAN : It sets the output terminal for scan test.

Impulse Winding Test (IWT) Mode

STEP 1/1 IWT		
NAME : (NONE)		DCR
NAME (NONE)		OSC
	1 2 3 4 5 6 7 8	IWT
	SCAN :	
SELECT MODE RN	IT LOCK CORR ERR	NEXT 2/3

NAME : It is the filename saved in the memory of Impulse Winding Tester
 Different STEP can set different filename that saved in the memory in order to recall different golden sample.
 No filename is required if the main wave data in the memory not in use.
 Way to input the filename: Use Function Key [EDITING] and arrow keys to enter the filename.

See Chapter 10 for the detail operation of Impulse Winding Tester.

Pause (PA) Mode	
STEP 1/1 PA	
	PA
MSG : PAUSE-MODE	
TIME :CONTINUE	
SELECT MODE RMT LOCK CORR ERR	NEXT 3/3

MSG : It sets the message to show on the screen in pause mode for maximum 15 characters.

- TIME : It sets the behavior of PAUSE MODE.
 - (1) Set to CONTINUE: The pause ends until the START key on panel is pressed or the START signal from HANDLER card (option) is triggered.
 - (2) Set to 0.1~999sec: The pause end when it reaches the time set for pause.

4.6.4 Temperature Measurement

The temperature measurement function is available for 19035-L when the temperature interface and temperature probe are purchased for use. It can measure the DUT and environment temperature. The temperature measurement function of 19035-L only works when appropriate interface and probe are purchased for application.

4.6.4.1 Specification of Temperature Measurement &

Compensation

Temperature Measurement Range	Temperature Measurement Accuracy (without PT100 temperature probe)	Temperature Compensation Accuracy (with the accuracy of resistance measurement)
-10.0 °C to 39.9°C (-14.0 to 103.8°F)	±0.3% ± 0.5°C (0.9°F) of reading	± 0.3%
40.0 to 99.9°C (104 to 211.8°F)	±0.3% ± 1.0°C (1.8°F) of reading	± 0.6%

Note: It is necessary to add the probe error (PT100 temperature probe is $< \pm 0.5^{\circ}$ C in typical) when measuring temperature.

4.6.4.2 Temperature Measurement Interface

The temperature measurement interface is installed on the 19035-L rear panel and uses the hole of TC SENSOR as measurement input as the figure shown below.

Figure 4-5

4.6.4.3 Temperature Probe

The standard temperature probe of 19035 is a PT100 Model platinum temperature sensor with a 1.5 meters cable. The probe head can measure the temperature from -50° C $\sim 300^{\circ}$ C. When using insert its plug to the TC SENSOR hole on the 19035 rear panel. The following figure shows the temperature probe.

A165015 Temperature Probe

Figure 4-6

4.6.4.4 Setting Temperature Compensation

Procedure:

1. Press **SYSTEM** in any screen after powered on the 19035 and the screen shows:

<system setup=""></system>	
TEST CONTROL	
SYSTEM CONTROL	DOWN
KEYLOCK	
CHANGE PASSWORD	ENTER
CALIBRATION	
RMT LOCK CORR ERR]

Move the highlight to TEST CONTROL. Press **F3** and [ENTER] to go to TEST CONTROL screen as shown below.

<test control=""></test>		
		DIGIT UP
PASS HOLD	: 0.5S	
ACV FREQUENCY	: 60Hz	DIGIT DN
SOFTWARE AGC	: ON	
WV AUTO RANGE	: OFF	DIGIT
GFI	: ON	
0.2 - 99.9S	RMT LOCK CORR ERR	EXIT

2. Move the highlight to T. COMPENSATION. Press **F1** and [SETUP] to go to the setting screen of Temperature Compensation.

<test control=""></test>		
		SETUP
FAIL CONTINUITY	: OFF	
RAMP JUDGMENT	: ON	
TRIGGER DELAY	: OFF	
DCR 4-TERMINAL	: OFF	
T. COMPENSATION	N : AUTO	<u> </u>
	RMT LOCK CORR ER	REXIT

- < T . COMPENSATION> : NONE REAL TEMP. TEMP. UNIT : °C THERMAL COEFF . : 3930ppm : 20°C BASE TEMP . TEMP . SETTING : 20°C EXIT CORR ERR RMT LOCK
- 3. The following shows the screen of temperature compensation.

4. The table below lists the setting items of temperature compensation and their description:

Items	Range	Default	Description
REAL TEMP.			It shows the temperature at present. It shows NONE if the hardware does not exist.
TEMP. UNIT	°C /°F	°C	It is the temperature unit.
THERMAL COEFF.	0~9999ppm	3930ppm	It is the temperature coefficient.
BASE TEMP.	-10°C ~99.9°C (14°F ~211.8°F)	20°C (68°F)	It is standard site temperature.
TEMP. SETTING	-10°C ~99.9°C (14°F ~211.8°F)	20°C (68°F)	It is the environment temperature. Use this parameter when set to MANUA.
T. COMPENSATION	AUTO/MANUAL/ OFF	OFF	It turns on the temperature compensation function. AUTO means to use the measured temperature for compensation, MANUAL means to use temperature set by TEMP. SETTING for compensation, while OFF means not to execute temperature compensation.

- 5. There are three modes available for selection when in the temperature compensation screen. They are T. COMPENSATION: OFF, T. COMPENSATION: MANUAL and T. COMPENSATION.: AUTO as described below:
- OFF : It closes the temperature compensation function; therefore, it will not show the temperature measurement. The 19035-L panel shows the DUT's resistance under the measurement temperature at the time when OFF is set.
- AUTO : This function needs to work with temperature interface and probe. It will perform measurement automatically and show the environment temperature. The 19035 panel shows the resistance at what time the present environment temperature converted to the base temperature (the temperature set in BASE TEMP. under T. COMPENSATION) when AUTO is set.
- MANUAL: This function opens for users to input the temperature t(°C). Other thermos can be used to enter the environment temperature at present when the temperature probe is not available. The value is adjusted by $[\triangle]$, $[\nabla]$, $[\triangleleft]$ and $[\triangleright]$ keys. The $[\triangleleft]$ and $[\triangleright]$ keys adjust the value roughly while the $[\triangle]$ and $[\nabla]$ keys can do close adjustment. The 19035-L panel shows the resistance that converted to the base temperature.

4.6.4.5 Usage of DCR Mode Temperature Compensation

The function of temperature compensation is to use the wire such as the copper wire or aluminum wire to get the resistance of a certain temperature (for instance 30°C is100 Ω) and a known temperature coefficient (such as 3930PPM) to calculate the resistance when at another temperature (such as 20°C.)

1. Formula of Temperature Compensation

R <i>t</i> 0 = R <i>t</i>	$\{1 + \alpha t 0^* (t-t0)\}$
where	
R <i>t</i> 0:	It is the base temperature resistance to be converted (default is 20°C.)
Rt:	It is the resistance measured under environment temperature.
α t0:	It is the temperature coefficient of base temperature.
t(°C):	It is environment temperature.
t0 (°C):	It is the base temperature to be converted.

2. Example :

In this example the environment temperature is 30° C and the measured copper wire resistance is 100Ω . To calculate the resistance at the temperature 20° C, users need to input the temperature to be converted (20° C) and the temperature coefficient (when the conductivity coefficient closes to 1 the temperature coefficient of copper is 3930 ppm.)

The calculation condition is that the resistance of copper wire measured is 100Ω under the environment temperature 30°C. The process of converting the 3930 ppm temperature coefficient to the resistance at 20°C is shown below.

R*t*0: unknown resistance R*t*: 100Ω *t*0: 3930 ppm t(°C): 30 °C t0 (°C): 20°C

 $Rt0 = Rt/{1 + \alpha t0 * (t-t0)} = 100 / {1 + (3930 e-6) * (30 - 20)} = 96.21 Ω$ Now the 19035-L shows the resistance is 96.21 Ω when at 20°C.

4.6.4.6 Description of Settings

The setting of temperature coefficient is to set the base temperature for converting resistance and the wire temperature coefficient to get the resistance at base temperature

Procedure:

1. Press **SYSTEM** → [TEST CONTROL] → [T. COMPENSATION] to go to Temperature Compensation screen.

< T . COMPENSATION	V>	
REAL TEMP.	: NONE	
TEMP. UNIT	: °C	
THERMAL COEFF .	: 3930ppm	
BASE TEMP .	: 20°C	
TEMP . SETTING	: 20°C	
	RMT LOCK CORR ERR	EXIT

- 2. Move the highlight to THERMAL COEFF. and press [\triangle], [\bigtriangledown], [\triangleleft], [\triangleleft], [\triangleright] keys to adjust the wire temperature coefficient. Then press [ENTER].
- 3. Move the highlight to BASE TEMP. and press [△], [▽], [⊲], [▷] keys to adjust the base temperature to be converted. Then press [ENTER].

4.6.4.6.1 Setting MANUAL Mode

Press **SYSTEM** \rightarrow [TEST CONTROL] \rightarrow [T. COMPENSATION] and select MANUAL for [T. COMPENSATION], the temperature compensation of DCR measurement in 19035-L/ 19035-ML is set to MANUAL mode.

< T . COMPENSATIO	N>				
					AUTO
TEMP. UNIT	:	°C			
THERMAL COEFF .	:	3930ppm			MANUAL
BASE TEMP .	:	20°C			
TEMP . SETTING	:	30°C			OFF
T. COMPENSATION	:	MANUAL			
	RMT	LOCK	CORR	ERR	EXIT

Please input the environment temperature for TEMP. SETTING. The 19035-L panel shows the DCR mode measured resistance that is the one of base temperature after conversion.

4.6.4.6.2 Setting AUTO Mode

If the 19035-L is installed with temperature interface and probe, it will measure and show the environment temperature automatically. Ensure the 19035-L has installed the temperature interface and probe, and press **SYSTEM** \rightarrow [TEST CONTROL] \rightarrow [T. COMPENSATION]. Select AUTO for [T. COMPENSATION], the temperature compensation of DCR measurement in 19035-L is set to AUTO mode.

The 19035-L panel shows the DCR mode measured resistance that is the one at base temperature after conversion.

Base	EP 1/1 DCR	HIGH ÷ 100.0kΩ	*******
Temperature		LOW : OFF	PROGRAM
Resistance		RANGE : AUTO	
	4.989 Ω	DWELL: OFF	CORRECT
	4.909 12	TEMP. :24.2°C	
Environment Temperature	0.00	1 2 3 4 5 6 7 8	LIST
	0.0S	SCAN : – – H L	
	PASS	RMT LOCK CORR ERR	

4.7 Using Open/Short Offset or Correction

4.7.1 Entering Open/Short Offset or Correction Screen

1. Press Function Key [CORRECT] in power on screen to go to Open/Short Offset or CORRECTION screen as shown below:

<correction></correction>	
OPEN CIRCUIT:COMPLETED	OPEN CIRCUIT
SHORT CIRCUIT: NEED	SHORT CIRCUIT
SAMPLE TEST: NO NEED	
	SAMPLE TEST

- 2. When the item in left area shows COMPLETED, it means the item is done and when NEED is appeared, it means the item is not done yet. When NO NEED is appeared, it indicates there is no need to execute this item. The CORR indicator will be on when all items are not showing NEED.
- 3. Use Function Keys [OPEN CIRCUIT], [SHORT CIRCUIT], [SAMPLE TEST] to select the function to be done.
- 4. Press **TEST** to exit this screen.

4.7.2 Using OPEN CIRCUIT

1. When in CORRECTION screen, press Function Key [OPEN CIRCUIT] to go to OPEN CIRCUIT screen as shown below:

<correction -="" circuit="" open=""></correction>	
OPEN CIRCUIT CORRECTION	
1.CURRENT OFFSET (WV & IR)	
2.GET STRAY CAP (OSC)	
REMOVE DUT FROM TEST FIXTURE!	
PRESS <start> TO START</start>	ABORT

- 2. OPEN CIRCUIT is to offset the leakage current of WVAC / WVDC / IR MODE test lead and fixture as well as to offset the leakage capacitance in OSC MODE.
- 3. Remove the fixture from the DUT and press **START** to offset the leakage current or capacitance for related test items.

4.7.3 Using SHORT CIRCUIT

1. Press Function Key [SHORT CIRCUIT] in CORRECTION screen to go to SHORT CIRCUIT screen as shown below:

<correction-short circuit=""></correction-short>	
SHORT CIRCUIT CORRECTION (DCR)	
PLACE SHORT CIRCUIT KIT!	
PRESS <start> TO START</start>	ABORT

- 2. SHORT CIRCUIT is to do short circuit offset for DCR.
- 3. Short-circuit the DCR test fixture and press **START** to do DCR short circuit offset.

4.7.4 Using SAMPLE TEST

1. Press Function Key [SAMPLE TEST] in CORRECTION screen to go to SAMPLE TEST screen as shown below:

<correction-sample test=""></correction-sample>	
SAMPLE TEST (GET SAMPLE)	
1.GET C NOMINAL (OSC)	
2.SAMPLE TEST (IWT)	
PLACE SAMPLE DUT!	
PRESS <start> TO START</start>	ABORT

- 2. SAMPLE TEST is to read the standard values as DUT judgment criteria for test in OSC and IWT mode.
- 3. Connect the DUT as test standard in OSC or IWT mode, press **START** to read the standard value for test in OSC or IWT mode.
- 4. Once the Winding Tester read the standard value in IWT, press **START** to execute next test step.

4.8 Setting & Using SUB Step

4.8.1 Setting SUB Step

Follow the steps below to set the Sub Step of STEP1:

- 1. Finish the setting of STEP1.
- 2. Press Function Key [PROGRAM], the reversed cursor is at the STEP. Press Function Key [NEW SUB] will show the first SUB STEP screen of STEP1:

STEP	1.A WVAC	LOW	:	OFF		
		ARC:		OFF		INSERT
VOLT	: 0.050kV	RAMP	:	OFF		
HIGH	: 0.500mA	FALL	:	OFF		DELETE
TIME	: 3.0S	REAL	:	OFF		
			1 2	23456	78	NEW SUB
		SCAN	:		· — —	
1-20 (1	TOTAL) RI	VT LO	СК	CORR	ERR	NEXT 2/2

3. Follow the above step to set the 2nd Sub Step of STEP1 and the 3rd Sub Step of STEP1 and so forth.

TEST SIGNAL	MEASURE	12345678 ******	
1 AC 0.100kV	0.500mA	HHL	
A AC 0.100kV	0.500mA	H L CO	
B AC 0.100kV	0.500mA	\	Main Step)
2 nd Sub Step of ST	EP1	1 st Sub Step of STEP1 TEP	
STANDBY	RMT		

Here shows the STEP1 under LIST screen and the Sub Step of STEP1:

Setting of Sub Step and Fail Continuity

Setting TEST CONTROL	Test Result	Execution Status		
		It starts Sub Step test.		
		It stops test when Sub Step is judged as Fail.		
SET FAIL	AS FAII	it does not start the next Main Step test when all		
CONTINUITY		Sub Steps are done. (All Sub Steps are judged as		
TO OFF		Pass).		
		It does not start Sub Step test.		
	AS PASS	It starts the next Main Step test.		
		It starts the Sub Step test.		
SET FAIL CONTINUITY TO ON	MAIN STEP JUDGES	It continues to test the next Sub Step when the Sub		
	AS FAIL	Step is judged as Fail.		
		It starts the next Main Step test.		
	MAIN STEP JUDGES	It does not start the Sub Step test.		
	AS PASS	It starts the next Main Step test.		

4. The application of Sub Step

The Main Step can test multiple DUTs at the same time. When the Main Step is judged as Fail, it will execute the Sub Step of this Main Step to a more complete judgment result. If the Main Step is judged as Pass then it will not conduct the Sub Step of this Main Step to reduce the test time.

4.9 Conducting the Test

4.9.1 Test Procedure for WVAC/WVDC/IR

First ensure there is no voltage output and the DANGER LED is off. Connect the low potential test cable (black) to the Scanner RTN/LOW terminal and secure the clamp. Short- circuit the test cable and high voltage output terminal and ensure there is no high voltage output. Next, plug in the high voltage test cable (red or white) to high voltage output terminal. Then connect the low potential test cable to DUT and the high potential test cable to DUT.

4.9.2 Test Procedure for WVAC/WVDC/IR

- 1. Connect the DUT properly following the connection method.
- 2. In the power on screen shown below:

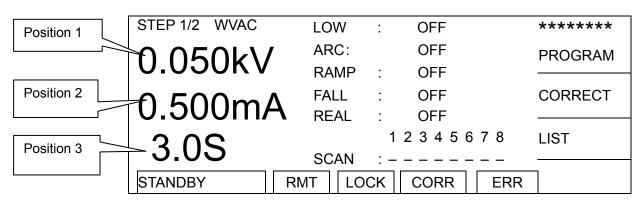


Illustration:

STEP 1/2 means there are 2 test steps and it is running the 1st test step at present. AC indicates the test mode. "Position 1" indicates the set voltage, "Position 2" is the high limit set for current, while "Position 3" is the test time. The status line shows the test result.

- 3. Press [STOP] to prepare for test. The status line shows "STANDBY".
- 4. Press [START] to activate the test

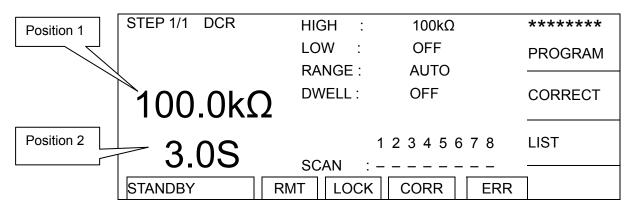
When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows "UNDER TEST" to warn it is in test state with voltage output. "Position 1" will show the output voltage value, "Position 2" will show the current readings and "Position 3" timer will start to count down.

5. GOOD Judgment

When all tests are done and the results show PASS, the Scanner will see the DUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper act at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Scanner judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper act at the same time until the [STOP] key on the Scanner is pressed. The test result will show FAIL state.


FAIL State:	
Test Result Display	Meaning
HIGH FAIL	The current/resistance measured exceeds the range or the set high limit.
LOW FAIL	The current/resistance measured exceeds the range or the set low limit.
ARC FAIL	The current arc exceeds the high limit.
GFI FAIL	The grounding fails and interrupted.
REAL FAIL	The real current measured exceeds the range or the set high limit.
OUTPUT FAIL	The output voltage is unable to reach 95% of set value.
SHORT	The current/resistance measured exceeds the hardware high limit.

FAIL State:

To stop test output in any condition, just press [STOP].

4.9.3 Test Procedure for DCR

- 1. Connect the DUT properly following the connection method.
- 2. In the power on screen shown below:

Illustration:

DCR means it is in DC Resistance measurement mode. "Position 1" is the high limit of DCR, the test result is on the status line and "Position 2" is the test time and the test result is also on the status line.

- 3. Press [STOP] to prepare for test. The status line shows "STANDBY".
- 4. Press [START] to activate the test When this key is pressed it starts to output voltage and the DANGER LED is on. Next the test line will show the test result and "Position 1" shows the DCR value.
- 5. GOOD Judgment

When all tests are done and the results show PASS, the Scanner will see the DUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Scanner judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the [STOP] key on the Scanner is pressed. The test result will show FAIL state.

Meaning
The measured DC resistance exceeds the high limit.
The measured DC resistance exceeds the low limit.
It is unable to measure the temperature.
The measured DC resistance is not balanced.

Note:

1. Every time the wiring material or fixture is changed for DCR measurement, be sure to run DCR SHORT CIRCUIT CORRECTION in advance to ensure the test accuracy.

2. Refer to 4.7.3 Using SHORT CIRCUIT for DCR SHORT CIRCUIT CORRECTION.

4.9.4 Test Procedure for OSC

- 1. Connect the DUT properly following the connection method.
- 2. In the power on screen shown below:

Position 1	STEP 1/1 OSC	OPEN : 50%	*****
	∽ 50V	SHORT : 300%	PROGRAM
Position 2	- 0.0nF		CORRECT
		1 2 3 4 5 6 7 8	LIST
		SCAN :	
	STANDBY	RMT LOCK CORR ERR	

Illustration:

OSC means it is in Open Short Check mode. "Position 1" is the setting voltage while "Position 2" is the reading capacitance. The test result shows in status line.

- 3. Press [STOP] to prepare for test. The status line shows "STANDBY".
- 4. Press [START] to activate the test

When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows "UNDER TEST" to warn it is in test state with voltage output. "Position 1" shows the output voltage value and "Position 2" shows the capacitance readings.

5. GOOD Judgment

When all tests are done and the results show PASS, the Scanner will see the DUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Scanner judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the [STOP] key on the Scanner is pressed. The test result will show FAIL state.

Fail State:	
Test Result Display	Meaning
OPEN FAIL	The setting of Open / Capacitance Reading is smaller than OPEN.
SHORT FAIL	The setting of Short / Capacitance Reading is larger than SHORT.
To stop tost outr	out in any condition just prose [STOP]

To stop test output in any condition, just press [STOP].

Note:

- 1. Every time the wiring material or fixture is changed for OSC, be sure to run OPEN CIRCUIT CORRECTION in advance to ensure the test accuracy.
- 2. It is necessary to run SAMPLE TEST when replacing a new DUT for OSC. Read the capacitance from the test sample as the standard value.
- 3. For OPEN CIRCUIT CORRECTION in OSC, please refer to 4.7.2 OPEN CIRCUIT.
- 4. For SAMPLE TEST in OSC, please refer to 4.7.4 SAMPLE TEST.

4.9.5 Test Procedure for IWT

- 1. Connect the DUT properly following the connection method.
- 2. In the power on screen shown below:

STEP 1/1 IWT	******
NAME : (NONE)	PROGRAM
	CORRECT
12345678	B LIST
SCAN :	RR

- 3. Press [STOP] to prepare for test. The status line shows "STANDBY".
- 4. Press [START] to activate the test

When this key is pressed it starts to output voltage and the DANGER LED is on. The status line shows "UNDER TEST" to warn it is in test state with voltage output.

5. GOOD Judgment

When all tests are done and the results show PASS, the Scanner will see the DUT as a GOOD product and cutoff the output. The HANDLER interface outputs PASS signal and the beeper acts at the same time.

6. NO GOOD Judgment

If the test value is abnormal, the Scanner judges it as FAIL and cutoff the output immediately. The HANDLER outputs FAIL signal and the beeper acts at the same time until the [STOP] key on the Scanner is pressed. The test result will show FAIL state.

Fail State:

Test Result Display	Meaning	
IWT FAIL	The Impulse Winding Test fails.	
DWX ERROR The communication of Impulse Winding Test is bad.		
To stop test output in any condition, just press [STOP].		

Note:

- 1. It is necessary to run SAMPLE TEST when replacing a new DUT for IWT. Read the standard value from the test sample for impulse test.
- 2. For SAMPLE TEST in IWT, please refer to 4.7.4 SAMPLE TEST.

4.9.6 Auto Range

- 1. Set the Auto Range to ON.
- 2. As Position 1 shows in the figure below it is set to high potential range.

	STEP 1/2 WVAC	LOW	:	OFF	******
	0.050kV	ARC:		OFF	PROGRAM
	0.030KV	RAMP	:	OFF	
Position 1	10.00mA	FALL	:	OFF	CORRECT
		REAL	:	OFF	
	3.0S		1 2	2345678	LIST
	5.05	SCAN	:		
	STANDBY RM	UT LO	СК	CORR ERR	

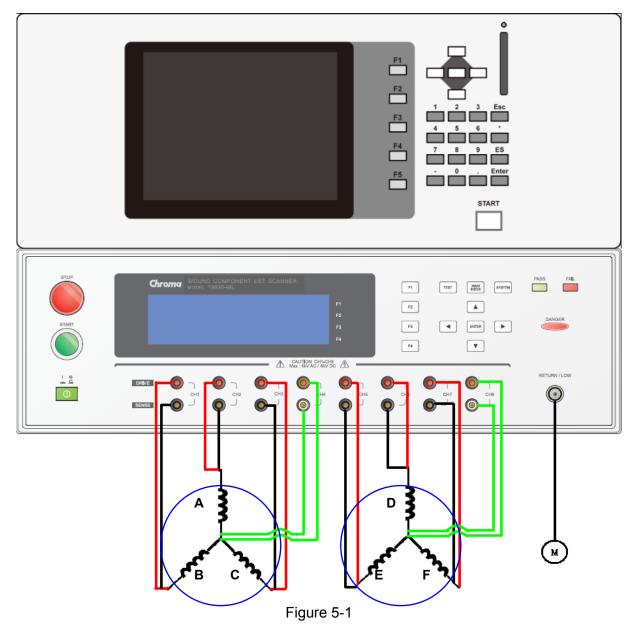
3. If the tested current is in low potential range at 0.6 seconds before the test ends, the current range will switch to low potential range automatically as Position 1 shows in the Figure below.

	STEP 1/2 WVAC	LOW	:	OFF	******
	0.050kV	ARC:		OFF	PROGRAM
	U.USUKV	RAMP	:	OFF	
Position 1	-0.500mA	FALL	:	OFF	CORRECT
	0.300IIIA	REAL	:	OFF	
	0.3S		1 3	2345678	LIST
	0.00	SCAN	:		
	UNDER TEST RM	IT LO	СК	CORR ERR	

4.10 Scan Test

This EST Scanner is able to perform multiple dots scanning test for fast and efficiency test.

Setting Method:


- 1. When in program setting screen, set the programs accordingly.
- 2. Move the highlighted bar to "SCAN" and press Function Key [CH NO.] to select the output channel to be set.
- 3. Now, use Function Key [H], [L] and [-] to set the scan test output states which are high voltage output, low voltage output and open.
- 4. When done press **ENTER** to confirm and exit.
- **Note:** This EST Scanner has no preset output channel. To begin the test please set one high voltage output channel at least.

5. Using 19035-ML

5.1 Precautions before Use

See Chapter 3 for the precautions before use.

5.2 Setting PROGRAM

It can test 2 pieces of three-wire fan stators at one time. The test modes are DCR, IWT and Withstand Voltage with the settings listed below:

STEP	MODE	Channel	RETURN/LOW	Description
		12345678		
STEP1	DCR	HXXLHXXL		It conducts DCR test for B & E coils.
STEP2	DCR	XHXLXHXL		It conducts DCR test for A& D coils.
STEP3	DCR	XXHLXXHL		It conducts DCR test for C & F coils.
STEP4	IWT	HXXLHXXL		It conducts Layer Short test for B & E coils.
STEP5	IWT	XHXLXHXL		It conducts Layer Short test for A & D coils.
STEP6	IWT	XXHLXXHL		It conducts Layer Short test for C & F coils.
STEP7	WAC	нннхнннх	L	It conducts Withstand AC test for the core of A, B, C, D, E & F coils.
STEP7.A	WAC	нннххххх	L	It conducts Withstand AC test for the core of A, B & C coils.
STEP7.B	WAC	ххххнннх	L	It conducts Withstand AC test for the core of D, E & F coils.

5.2.1 Connecting & Setting Diagram of Withstand Voltage Test Mode

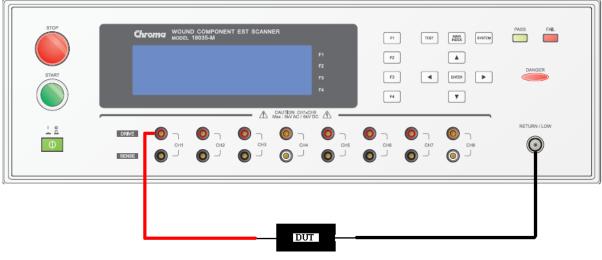
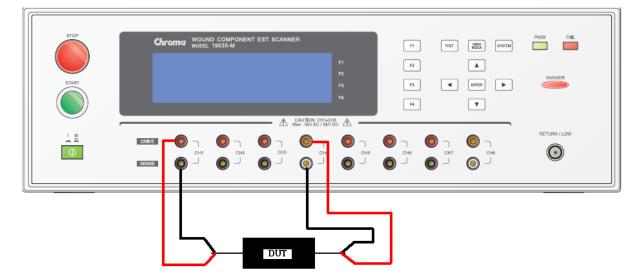


Figure 5-2

Withstand Voltage AC Test Mode (WVAC)

STEP 1	/1	WVAC	LOW	:	OFF	
			ARC:		OFF	WVAC
VOLT	:	0.050kV	RAMP	:	OFF	
HIGH	:	0.500mA	FALL	:	OFF	WVDC
TIME	:	3.0S	REAL	:	OFF	
				1	2345678	IR
			SCAN	: H		
SELEC	SELECT MODE RMT LOCK CORR ERR NEXT 1/3					

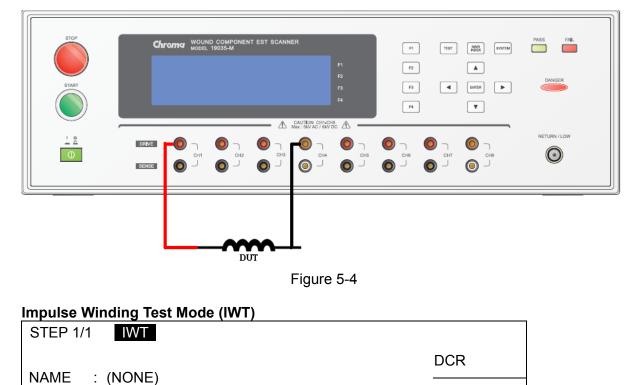
Withstand Voltage DC Test Mode (WVDC)


STEP 1/1	WVDC	LOW	:	OFF		
		ARC:		OFF	WVAC	
VOLT :	0.050kV	RAMP	:	OFF		
HIGH :	0.500mA	DWELL	:	OFF	WVDC	
TIME :	3.0S	FALL	:	OFF		
			1 2	2345678	IR	
		SCAN	: H -			
SELECT	SELECT MODE RMT LOCK CORR ERR NEXT 1/3					

Insulation Resistance Test Mode (IR)

STEP 1/	/1	IR	HIGH	:	OFF	
			RAMP	:	OFF	WVAC
VOLT	:	0.050kV	FALL	:	OFF	
LOW	:	1.0MΩ	RANGE	:	AUTO	WVDC
TIME	:	3.0S				
				12	2345678	IR
			SCAN	:H-		
SELECT	SELECT MODE RMT LOCK CORR ERR NEXT 1/3					NEXT 1/3

5.2.2 Connecting & Setting Diagram of DCR Test Mode


When doing DCR test, the DRIVE and SENSE test wires need to be clipped at the same point.

DC Resistan	DC Resistance Test Mode (DCR 4-Terminal Test Mode)						
STEP 1/1	DCR	HIGH	:	100.0kΩ			
		LOW	:	OFF	DCR		
		RANGE	:	AUTO			
		DWELL	:	OFF	OSC		
TIME :	OFF						
			1 2	2345678	IWT		
		SCAN	:H-	L <i></i> _			
SELECT M	ODE R	MT LOC	СК	CORR ERR	NEXT 2/3		

5.2.3 Connecting & Setting Diagram of IWT Test Mode


~~~

| 1 2 3 4 5 6 7 8               | IWT        |
|-------------------------------|------------|
| SCAN : H – – L – – –          |            |
| SELECT MODE RMT LOCK CORR ERF | R NEXT 2/3 |

## 5.2.4 Connecting & Setting Diagram of OSC Test Mode

The connection of DUT is the same as Withstand Voltage test mode.

| Open Short Check I | lest Mode (OSC)        |            |
|--------------------|------------------------|------------|
| STEP 1/1 OSC       | OPEN : 50%             |            |
|                    | SHORT : 300%           | DCR        |
|                    |                        | OSC        |
|                    | 1 2 3 4 5 6 7 8        | IWT        |
|                    | SCAN : H – – – – – – – |            |
| SELECT MODE        | RMT LOCK CORR ER       | R NEXT 2/3 |

#### Open Short Check Test Mode (OSC)

## 6. HANDLER Interface (Option)

## 6.1 Introduction

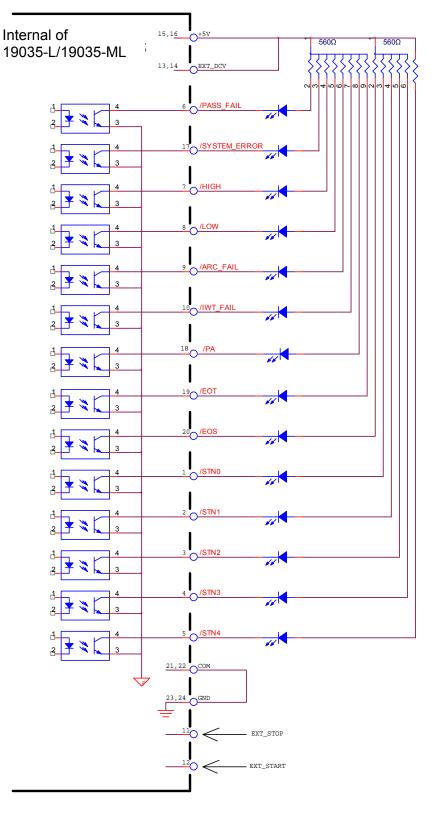
The HANDLER interface socket can be purchased for the Scanner rear panel. When there is desire to control the Scanner output via external signal or to send the signal outside, the HANDLER card can be inserted for external control.

## 6.2 Specification

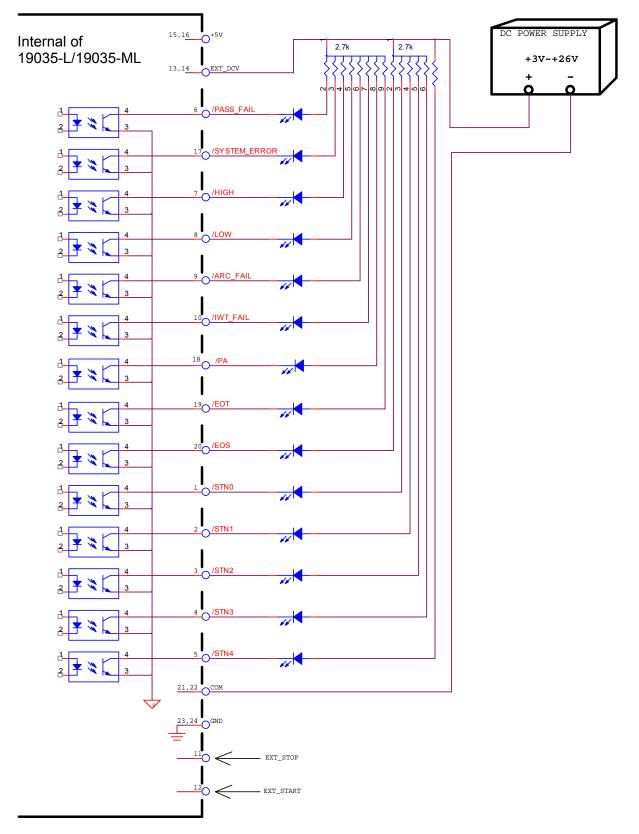
## 6.2.1 Driving Capability

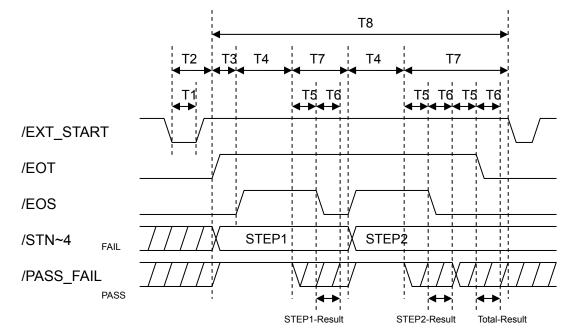
Internal Signal Output Specification: DC 5V, 40~60mA External Signal Input Specification: DC 3V~26V(HIGH), 10mA± 4mA

## 6.2.2 Pin Assignment


| Pin No. | Signal        | Input/Output                                                                                                                                                                                                                                                                  | Description                                                                                     |
|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1       | /STN0         | Output                                                                                                                                                                                                                                                                        | /STN0~/STN4 signals indicate the test step code                                                 |
| 2       | /STN1         |                                                                                                                                                                                                                                                                               | output.                                                                                         |
| 3       | /STN2         |                                                                                                                                                                                                                                                                               | 5 bits are used to indicate 20 test steps.                                                      |
| 4       | /STN3         |                                                                                                                                                                                                                                                                               | The output format is binary code.                                                               |
| 5       | /STN4         |                                                                                                                                                                                                                                                                               | (/STN0 is low bit and /STN4 is high bit.) <b>Note (1)</b>                                       |
| 6       | /PASS_FAIL    | Output It outputs LOW when the test result is PASS<br>this time no output for /HIGH, /LOW, /ARC_F<br>& IWT_FAIL signals (all are HIGH.)<br>It outputs HIGH when the test result is FAIL.<br>this time there is output for /HI, /LO, /ARC_F,<br>IWT_FAIL signals (acting LOW.) |                                                                                                 |
| 7       | /HIGH         |                                                                                                                                                                                                                                                                               | When the test result is HIGH FAIL, the output turns to LOW from High.                           |
| 8       | /LOW          |                                                                                                                                                                                                                                                                               | When the test result is LOW FAIL, the output turns to LOW from High.                            |
| 9       | /ARC_FAIL     |                                                                                                                                                                                                                                                                               | When the test result is ARC_FAIL, the output turns to LOW from High                             |
| 10      | /IWT_FAIL     |                                                                                                                                                                                                                                                                               | When the test result is IWT_FAIL, the output turns to LOW from High.                            |
| 11      | /EXT_STOP     | Input                                                                                                                                                                                                                                                                         | External STOP signal input when signal state is LOW.                                            |
| 12      | /EXT_START    | Input                                                                                                                                                                                                                                                                         | External START signal input when signal state is LOW.                                           |
| 13,14   | EXT_DCV       | Input                                                                                                                                                                                                                                                                         | External DC voltage input, the range is between +3V~+26V.                                       |
| 15,16   | +5V           | Output                                                                                                                                                                                                                                                                        | The internal DC voltage output.                                                                 |
| 17      | /SYSTEM ERROR | Output                                                                                                                                                                                                                                                                        | The signal output pin for system internal error.<br>It means the system has internal error when |

|       |      |        | output is LOW.                                                                                                                                                                            |
|-------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18    | /PA  | Output | The signal is HIGH when enabled for test. Later,<br>the /PA signal and the HIGH or LOW level of<br>COM will change once every time it goes through<br>the PA mode.                        |
| 19    | /EOT | Output | When the signal is HIGH, it indicates the test<br>program is running.<br>When the signal is LOW, it indicates the test<br>program is ended or is ready mode.                              |
| 20    | /EOS |        | When the signal is HIGH, it indicates the test step<br>is running.<br>When the signal is LOW, it indicates the test step<br>is done before going to the next or all If them are<br>ended. |
| 21,22 | СОМ  |        | It is the low voltage terminal for input/output signal.                                                                                                                                   |
| 23,24 | GND  |        | It is the low voltage terminal for internal voltage output.                                                                                                                               |


Note (1) : The test step code signal of Handler Board will send out sequentially no matter it is Main Step or Sub Step.


## 6.3 Example of External Control Circuit

## 6.3.1 Example of Using Internal Power Supply



## 6.3.2 Example of Using External Power Supply





## 6.4 Timing Diagram

Figure 6-1 Timing Diagram - Example of 2 Test Steps

| Timing | Limit    | Description                                                          |
|--------|----------|----------------------------------------------------------------------|
| T1     | > 20mS   | It sets the time required for external trigger signal (/EXT_START)   |
|        | 20110    | to sustain. It should be more than 20mS.                             |
| T2     | < 20mS   | It sets the time for clear from external trigger signal (/EXT_START) |
| 12     | < 20113  | to /EOT signal. It should be less than 20mS.                         |
| Т3     | -        | It sets the time for Trigger Delay.                                  |
| T4     | -        | It sets the time required for each test step.                        |
| Т5     | > 10mS   | The waiting time will be more than 10mS for /PASS_FAIL signal to     |
| 15     | > 10113  | be stable.                                                           |
| Т6     | > 10mS   | The waiting time will be more than 10mS for EOS Hold time, EOS       |
| 10     | - 101113 | HOLD time + SUB PASS time or /EOT signals to be stable.              |
| T7     | -        | The time required for each test step to end.                         |
| T8     | -        | The time required for a test program.                                |

## 7. A190351 8CH to 16CH Scan Box (Option)

## 7.1 Introduction

The optional A190351 8CH to 16CH Scan Box can be purchased for this scanner to change the output from 8 channels to 16 channels.

## 7.2 Front & Rear Panel of A190351



Figure 7-1 Front Panel of A190351

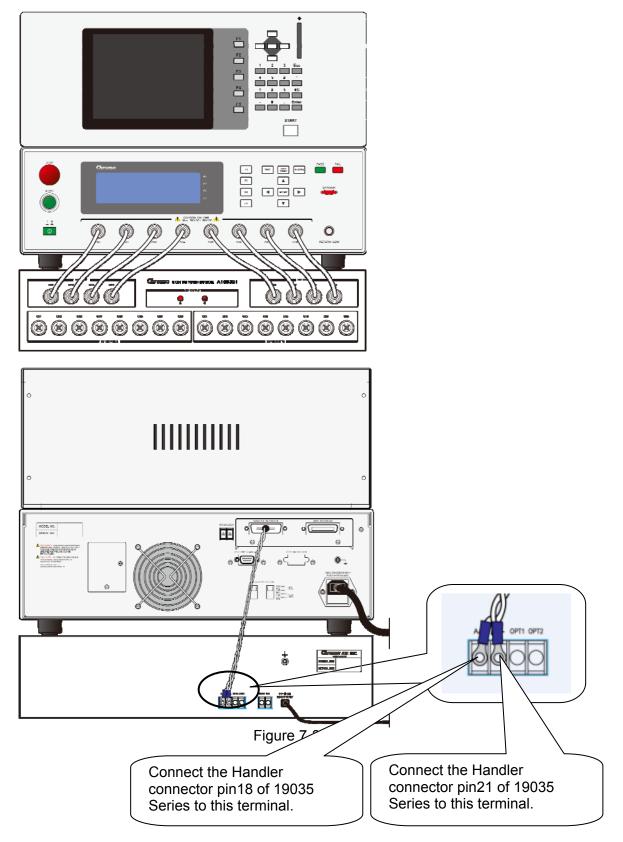


Figure 7-2 Rear Panel of A190351

## 7.3 Specification of A190351 8Ch to 16Ch Scan Box

1. Specification ( $18^{\circ}C \sim 28^{\circ}C \quad RH \le 70\%$ )

| A1 | A190351 (8-Channel to 16-Channel Scan Box) |                                                                                       |  |
|----|--------------------------------------------|---------------------------------------------------------------------------------------|--|
|    | Withstanding Voltage Section               |                                                                                       |  |
|    | HV                                         | Maximum Voltage is 5kVac, 6kVdc<br>Maximum Current is 100mA ac or peak dc             |  |
|    | HV Output Port                             | A/B Ports.                                                                            |  |
|    | Ambient Temperature and Relative Humidity  |                                                                                       |  |
|    | Specifications Range                       | 18 to 28°C (64 to 82°F), 20 to 70% RH.                                                |  |
|    | Operable Range                             | Maximum 80% RH. for temperature up to 31°C (88°F) linearly to 50% RH. at 40°C (104°F) |  |
|    | Power Requirement                          |                                                                                       |  |
|    | Input Voltage                              | DC 24V +5 -10%                                                                        |  |
|    | Consumption                                | With rated load: 10W max.                                                             |  |
|    | Operation Time                             |                                                                                       |  |
|    | Operate Time                               | <10ms                                                                                 |  |
|    | General                                    |                                                                                       |  |
|    | Dimension                                  | 430mm(w) x 450mm(d) x 102mm(h)                                                        |  |
|    | Weight                                     | Approx. 6 kg                                                                          |  |


- 2. There is a safety ground terminal  $\frac{1}{\overline{O}}$  at the rear chassis. Ensure it is grounded to earth exactly.
- 3. Operation

The pin assignments on the rear panel are shown as below:



- (1) The control signals are A/B and GND. The 8 input connectors on the fixture are short-circuited with A group when the A/B and GND are open and short-circuited with B group when the A/B and GND are short.
- (2) The power is supplied by the 24V Adaptor. Input the power from +24V and 0V connector if to supply by other auto device. The +24V ADAPTER and the external power cannot be used at the same time (only one is available.)
- (3) OPT1 and OPT2 connectors are invalid at present.
- 4. Standard Accessory
  - (1) 24V Adaptor x 1
  - (2) High Voltage Input Wire x 8 pcs
  - (3) High Voltage Output Wire x 16 pcs

## 7.4 Connecting 19035-L & A190351



## 7.4.1 Example of 19035-L Parameter Setting & A190351 Output

(1) 19035-L Parameter Settings

| Т | EST  | SIGNAL  | MEASURE | 1 2 3 4 5 6 7 8 | ******  |
|---|------|---------|---------|-----------------|---------|
| 1 | AC   | 0.100kV | 0.500mA | НННННН          | PROGRAM |
| 2 | PA   | PAUSE   |         |                 |         |
| 3 | AC   | 0.200kV | 0.500mA | ннннннн         | CORRECT |
| 4 | PA   | PAUSE   |         |                 |         |
| 5 | AC   | 0.300kV | 0.500mA | ннннннн         | STEP    |
|   |      |         |         |                 |         |
| S | STAN | DBY     | RMT LO  | CK CORR ERR     |         |

(2) A190351 Output Statue

| 19035-L<br>Execution STEP | A190351 Output Status                                                     | A190351 Display    |
|---------------------------|---------------------------------------------------------------------------|--------------------|
| STEP1 AC                  | HV OUTPUT A (CH1~CH8) with output<br>HV OUTPUT B (CH1~CH8) without output | HV OUTPUT A LED on |
| STEP2 PA                  | Switch A190351 to HV OUTPUT B                                             | HV OUTPUT B LED on |
| STEP3 AC                  | HV OUTPUT A (CH1~CH8) without output<br>HV OUTPUT B (CH1~CH8) with output | HV OUTPUT B LED on |
| STEP4 PA                  | Switch A190351 to HV OUTPUT A                                             | HV OUTPUT A LED on |
| STEP5 AC                  | HV OUTPUT A (CH1~CH8) with output<br>HV OUTPUT B (CH1~CH8) without output | HV OUTPUT A LED on |

\*Note: Every time the 19035-L executes the PA mode, the HV OUTPUT A and HV OUTPUT B of A190351 are alternated.

## 8. RS232/GPIB Interface

## 8.1 Introduction

The Scanner can be controlled remotely by PC for data transmission through RS232 or GPIB (IEEE 488-1978) interface.

## 8.2 RS232 Interface

## 8.2.1 Specification

The standard is RS232 interface with the following settings:

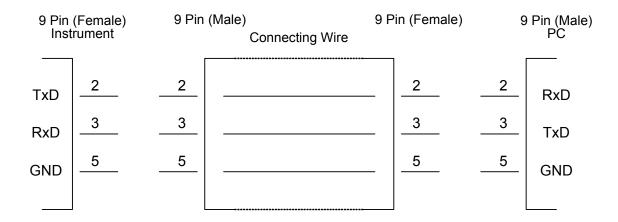
| Baud Rate:        | 9600 / 19200 / 38400                   |
|-------------------|----------------------------------------|
| Parity:           | NONE                                   |
| Flow Control:     | NONE                                   |
| Transmission Bit: | 1 start bit + 8 data bits + 1 stop bit |

## 8.2.2 Command Format

The function of RS232 interface is to input the ASCII code composed commands in order to do remote control and setting. The command string length is limited to 255 characters including End Code. [Command+parameter] forms an instruction and semicolon ";" can be used to connect any two commands with end code at last. The End Code one of the following formats:

| End | Code |
|-----|------|
|     |      |

| LF    |  |
|-------|--|
| CR+LF |  |


## 8.2.3 Connector

The RS232 connector of the Scanner is a female 9-pin connector.

$$\begin{array}{c}
54321\\ \hline
\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\\9876\end{array}$$

| Pin No. |     | Description      |
|---------|-----|------------------|
| 1       | *   | Unused           |
| 2       | TxD | Sending data     |
| 3       | RxD | Receiving data   |
| 4       | *   | Unused           |
| 5       | GND | Grounding signal |
| 6       | *   | Unused           |
| 7       | *   | Unused           |
| 8       | *   | Unused           |
| 9       | *   | Unused           |

## 8.2.4 Connection



## 8.3 GPIB Interface (Option)

## 8.3.1 Applied Standard

It applies the IEEE488-1978 standard.

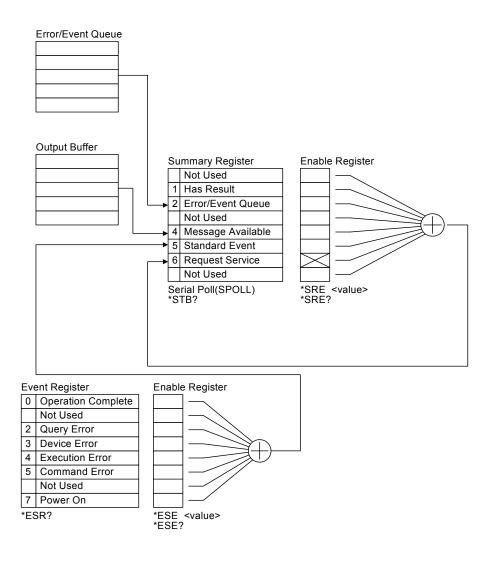
## 8.3.2 Interface Capability

| Code | Meaning                       |
|------|-------------------------------|
| SH1  | Source Handshake              |
| AH1  | Acceptor Handshake            |
| T4   | Basic Talker requirement      |
| L4   | Basic Listener requirement    |
| SR1  | Service request requirement   |
| RL1  | All remote/local requirement  |
| PP0  | No Parallel poll requirement  |
| DC1  | All device clear requirement  |
| DT0  | No Device trigger requirement |
| C0   | No controller requirement     |

## 8.3.3 Interface Message

| Interface Message | Meaning               | Reaction                                                         |
|-------------------|-----------------------|------------------------------------------------------------------|
| GTL               | Go To Local           | It switches the Scanner to Local mode.                           |
| SDC               | Selected Device Clear | It clears the GPIB interface state.                              |
| LLO               |                       | It is unable to switch to Local mode by<br>pressing [LOCAL] key. |
| IFC               | Interface Clear       | It resets the GPIB interface.                                    |

The table below lists the Scanner's reaction to the following interface messages:


## 8.3.4 Command Format

The function of GPIB interface is to input the ASCII code composed commands in order to do remote control and setting. The command string length is limited to 255 characters including End Code. [Command+parameter] forms an instruction and semicolon ";" can be used to connect any two commands with end code at last. The End Code can be one of the following formats:

#### End Code

| LF        |
|-----------|
| CR+LF     |
| EOI       |
| LF+EOI    |
| CR+LF+EOI |

## 8.4 Structure of Remote Interface



## 8.5 Commands for Remote Interface

## 8.5.1 Commands Summary

• IEEE 488.2 Commands

| *CLS<br>*ESE<br>*ESE?<br>*ESR?<br>*IDN? | <enable value=""></enable>      |
|-----------------------------------------|---------------------------------|
| *OPC                                    |                                 |
| *OPC?                                   |                                 |
| *PSC                                    | 0 1                             |
| *PSC?                                   |                                 |
| *RST                                    |                                 |
| *RCL                                    | <register number=""></register> |
| *SAV                                    | <register number=""></register> |
| *SRE                                    | <enable value=""></enable>      |
| *SRE?                                   |                                 |
| *STB?                                   |                                 |
|                                         |                                 |

The parameter syntax of SCPI command includes:

- (1) Use "< >" to indicate the defined parameter of standard SCPI command.
- (2) "< numeric value >" is a decimal data while "< boolean >" is Boolean program data with value 0 or 1; "< string >" means string data and the format is to double quote the strings.
   (2) Use contribution will be a "" to indicate a context of OD
- (3) Use vertical bar "|" to indicate parameter OR.
- (4) "< channel list >" indicates the status of Scanner and Channel. The presentation is: (@(C1, C2...)) where C1, C2... means Channel number and (@(0)) means to Open all channels.

Ex: (@(1,3)) sets CH1 and CH3.

Ex: (@(0)) sets all SCAN Port to OFF.

(5) The suffix variable is <decimal numeric data> that has no separator between it and the command. For instance, the <n> and <s> in the command [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>[:JUDGment]? Are suffix variables, the value is <decimal numeric data>. When <s> is 1, it means SUB-A step, 2 means SUB-B step and so forth.

#### SCPI Commands

| :MEMory   |                                |              |
|-----------|--------------------------------|--------------|
| DELete    |                                |              |
| [:NAME]   | < name >                       |              |
| :LOCation | < register number >            |              |
| :STATe    |                                |              |
| :DEFine   | < name >, < register number >  |              |
| :DEFine?  | < name >                       |              |
| :FREE     |                                |              |
| :STATe?   |                                |              |
| NSTates?  |                                |              |
| SYSTem    |                                |              |
| :ERRor    |                                |              |
| [:NEXT]?  |                                |              |
| :KLOCk    | <boolean>   ON   OFF</boolean> | (RS232 only) |
| KLOCk?    |                                |              |
| LOCK      |                                |              |

|      | :OWNer?<br>  :RELease                                                                              | (RS232 only) |
|------|----------------------------------------------------------------------------------------------------|--------------|
| I    | :REQuest?                                                                                          | (RS232 only) |
| i    | :TCONtrol                                                                                          | (10202 011)) |
| i    | :AGC                                                                                               |              |
|      | [:SOFTware] <boolean>   ON   OFF<br/>    [:SOFTware]?</boolean>                                    |              |
|      | DCRBalance < <i>number value&gt;</i><br>DCRBalance?                                                |              |
|      | <ul> <li>  :FAIL</li> <li>  :OPERation RESTart   CONTinue   STOP</li> <li>  :OPERation?</li> </ul> |              |
| İ    | :FTERminal <boolean>   ON   OFF<br/>  :FTERminal?</boolean>                                        |              |
| İ    | GFI <boolean>   ON   OFF<br/>GFI?</boolean>                                                        |              |
|      | :RJUDgment <boolean>   ON   OFF<br/>  :RJUDgment?</boolean>                                        |              |
| i    | :TEMPerature                                                                                       |              |
| İ    | [:COMPensation]                                                                                    |              |
|      | [:ENABle] OFF   MANUal   AUTO                                                                      |              |
|      | [:ENABle]?                                                                                         |              |
|      | :UNIT C   F<br>    :UNIT?                                                                          |              |
|      | :TCOefficient < <i>number value</i> >                                                              |              |
| i    | TCOefficient?                                                                                      |              |
|      | :BTEMperature <temperature></temperature>                                                          |              |
|      | BTEMperature?                                                                                      |              |
|      | :ETEMperature <temperature><br/>    :ETEMperature?</temperature>                                   |              |
|      |                                                                                                    |              |
| 1    | :PASS <number value=""></number>                                                                   |              |
| į    | :PASS?<br>  :WVAC                                                                                  |              |
|      | VAC<br>    :FREQuency < <i>number value</i> >                                                      |              |
| i    | :FREQuency?                                                                                        |              |
| İ    | :WRANge                                                                                            |              |
|      | [:AUTO] <boolean>   ON   OFF</boolean>                                                             |              |
|      | [:AUTO]?                                                                                           |              |
|      | :TRIGger<br>    :DELay <i><number value=""></number></i>   OFF                                     |              |
| 1    | :DELay                                                                                             |              |
| İ    | :VERSion?                                                                                          |              |
| :SOL | JRce]                                                                                              |              |
|      | :SAFety                                                                                            |              |
|      | :FETCh? [ <item>][,<item>]</item></item>                                                           |              |
|      | :RESult<br>    :ALL                                                                                |              |
| I    | [:JUDGment]?                                                                                       |              |
| Ì    | :MMETerage?                                                                                        |              |
| İ    | :MODE?                                                                                             |              |
|      | :OMETerage?                                                                                        |              |
|      | :RMETerage?<br>      :TIME                                                                         |              |
|      | :TIME<br>      [:ELAPsed]                                                                          |              |
|      |                                                                                                    |              |
| İ    | :FALL?                                                                                             |              |
|      |                                                                                                    |              |

|                     | :RAMF                  | 2                                                |              |
|---------------------|------------------------|--------------------------------------------------|--------------|
|                     | [:TEST                 |                                                  |              |
|                     |                        | an>   ON   OFF                                   | (RS232 only) |
| :AREPo              |                        |                                                  | (RS232 only) |
|                     | eted?                  |                                                  |              |
| [:LAST]             | UDCmontl 2             |                                                  |              |
| [:J<br>    :STEP<   | UDGment]?              |                                                  |              |
|                     | IAIN]                  |                                                  |              |
|                     | [:JUDGment             | ]?                                               |              |
|                     | :MMETerage             |                                                  |              |
|                     | :RMETerage             |                                                  |              |
|                     | :OMETerage<br>:TIME    | ) /                                              |              |
|                     | [:ELAF                 | sedl                                             |              |
|                     |                        | DWELI?                                           |              |
|                     |                        | ALL?                                             |              |
|                     |                        | RAMP?                                            |              |
|                     | [:<br>JB <s></s>       | TEST]?                                           |              |
| .3<br>              | JD-82<br>[:JUDGment]   | ]?                                               |              |
|                     | :MMETerage             |                                                  |              |
|                     | :RMETerage             |                                                  |              |
|                     | :OMETerage<br>:TIME    | ?                                                |              |
|                     |                        | sed]                                             |              |
|                     |                        | DWELI?                                           |              |
|                     | j j :F                 | ALL?                                             |              |
|                     |                        | RAMP?                                            |              |
| <br>    :TOTal      | [:                     | TEST]?                                           |              |
|                     | UDGment]?              |                                                  |              |
| SNUMber?            | ob officing:           |                                                  |              |
| :STARt              |                        |                                                  |              |
| [:ONC               |                        |                                                  |              |
|                     |                        |                                                  |              |
|                     | PEN <i>GET</i><br>PEN? | OFF                                              |              |
|                     | HORt GET               | OFF                                              |              |
|                     | HORt?                  |                                                  |              |
|                     | AMPle GET              |                                                  |              |
|                     | AMPle?                 |                                                  |              |
| :STOP<br>  :STATus? |                        |                                                  |              |
| :STEP <n></n>       |                        |                                                  |              |
| [:MAIN]             |                        |                                                  |              |
|                     | ELete                  |                                                  |              |
|                     | ODE?                   |                                                  |              |
|                     | ET?<br>VAC             |                                                  |              |
|                     | :CHANnel               |                                                  |              |
|                     | [:HIGH                 |                                                  | >            |
|                     | [:HIGH                 | -                                                |              |
|                     | :LOW<br>  :LOW?        | <channel list:<="" td=""><td>&gt;</td></channel> | >            |
|                     | :CORRectio             |                                                  |              |
|                     | [:CURI                 |                                                  |              |
|                     |                        |                                                  |              |

I

|         | :OPE           | EN                                             |
|---------|----------------|------------------------------------------------|
|         |                | [:RANGe]                                       |
|         |                | [:BEST] <number value=""></number>             |
|         |                | [:BEST]?                                       |
| iiii    | i i i          | ALL <range 1="">,<range 2=""></range></range>  |
|         | · · ·          | :ALL?                                          |
|         | :RCURren       | 1                                              |
|         |                |                                                |
|         |                |                                                |
|         |                | [:RANGe]                                       |
|         |                | [:BEST] <number value=""></number>             |
|         |                | [:BEST]?                                       |
|         |                | :ALL <range 1="">,<range 2=""></range></range> |
|         |                | :ALL?                                          |
|         | [:LEVel]       | <number value=""></number>                     |
|         | [:LEVel]?      |                                                |
|         | :LIMit         |                                                |
|         | I :ARC         | <number value="">   OFF</number>               |
|         | :ARC?          |                                                |
|         | [:HIGH]        | <number value=""></number>                     |
|         |                |                                                |
|         | [ [:HIGH]?     |                                                |
|         | I :LOW         | <number value="">   OFF</number>               |
|         | LOW?           |                                                |
|         | :REAL          | <number value="">   OFF</number>               |
|         | :REAL?         |                                                |
|         | :TIME          |                                                |
|         | :FALL          | <number value="">   OFF</number>               |
|         | FALL?          |                                                |
| iiii    | I :RAMP        | <number value="">   OFF</number>               |
|         | :RAMP?         | 1                                              |
|         | [:TEST]        | <number value="">   CONTinue</number>          |
|         | [:TEST]?       |                                                |
| WVD     |                |                                                |
|         | :CHANnel       |                                                |
|         | [:HIGH]        | <channel list=""></channel>                    |
|         |                |                                                |
|         | [ [:HIGH]?     | a haa waa a hiifaa ta                          |
|         | I :LOW         | <channel list=""></channel>                    |
|         | LOW?           |                                                |
|         | :CORRection    |                                                |
|         | [:CURRen       |                                                |
|         | :OPE           |                                                |
|         |                | [:RANGe]                                       |
|         |                | [:BEST] <number value=""></number>             |
| i i i i |                | [:BEST]?                                       |
|         |                | ALL <range 1="">,<range 2=""></range></range>  |
|         |                | :ALL?                                          |
|         | <br>  :RCURren | 1                                              |
|         |                |                                                |
|         |                | [:RANGe]                                       |
|         |                |                                                |
|         |                | [:BEST] <number value=""></number>             |
|         |                | [:BEST]?                                       |
|         |                | :ALL <range 1="">,<range 2=""></range></range> |
|         |                | :ALL?                                          |
|         | [:LEVel]       | <number value=""></number>                     |
|         | [:LEVel]?      |                                                |
|         | :LIMit         |                                                |
| i i i i | ARC :          | <number value="">   OFF</number>               |
|         | ARC?           |                                                |
|         |                |                                                |

| [:HIC                                                                   | GH] <number value=""></number>                                                |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| i i i i i i i:HIC                                                       | GH]?                                                                          |
| :LOV                                                                    | 1                                                                             |
|                                                                         | V :                                                                           |
|                                                                         | 1                                                                             |
|                                                                         | ELI?<br>L <number value="">   OFF</number>                                    |
| i i i i i :FAL                                                          | L?                                                                            |
| :RAM                                                                    | 1                                                                             |
|                                                                         |                                                                               |
|                                                                         | ST]?                                                                          |
| :IR<br>        :CHANnel                                                 | 1                                                                             |
|                                                                         |                                                                               |
|                                                                         | GH]?                                                                          |
| :LO\<br>          :LO\                                                  |                                                                               |
|                                                                         | tion                                                                          |
|                                                                         | Rent                                                                          |
|                                                                         | :OPEN<br>  [:RANGe]                                                           |
|                                                                         | [:BEST] <number value=""></number>                                            |
|                                                                         | [:BEST]?                                                                      |
| 3>, <range 4="">,<range 5="">,<range 6="">,&lt;</range></range></range> | :ALL <range 1="">,<range 2="">,<range 7="" crange=""></range></range></range> |
|                                                                         | :ALL?                                                                         |
| [:LEVel]<br>        [:LEVel]?                                           | <number value=""></number>                                                    |
|                                                                         |                                                                               |
|                                                                         | 1                                                                             |
| HIG                                                                     |                                                                               |
|                                                                         | •                                                                             |
| :RANGe                                                                  |                                                                               |
| UPF                                                                     |                                                                               |
|                                                                         | Wer] <number value=""></number>                                               |
| :LO<br>-UAUT                                                            | Wer]?<br>ГO <boolean>   ON   OFF</boolean>                                    |
| AU <sup>-</sup>                                                         |                                                                               |
|                                                                         |                                                                               |
| :FAL                                                                    | 1                                                                             |
|                                                                         | MP <number value="">   OFF</number>                                           |
| :RAI                                                                    |                                                                               |
|                                                                         | ST] ST]?                                                                      |
|                                                                         | -                                                                             |
| :CHANnel                                                                |                                                                               |
|                                                                         | GH]?                                                                          |
|                                                                         | N <channel list=""></channel>                                                 |
| :LO\<br>        :CORRec                                                 |                                                                               |
|                                                                         | Sistance]                                                                     |
|                                                                         |                                                                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :SHC                                                                                                                                                                                                      | )Rt                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           | [:RANGe]                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           | [:BEST] <number value=""></number>                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           | [:BEST]?<br>  :ALL <range 1="">,<range 2="">,<range< td=""></range<></range></range>                                                                                                                                                                                                                                                                      |
| 3>, <range 4="">,<range 5="">,<rang< td=""><td>ae 6 &gt;</td><td>  .ALL <lange i="">,<lange z="">,<lange< td=""></lange<></lange></lange></td></rang<></range></range>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ae 6 >                                                                                                                                                                                                    | .ALL <lange i="">,<lange z="">,<lange< td=""></lange<></lange></lange>                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           | :ALL?                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mit                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [:HIGH]<br>[:HIGH]?                                                                                                                                                                                       | <number value=""></number>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :LOW                                                                                                                                                                                                      | <number value="">   OFF</number>                                                                                                                                                                                                                                                                                                                          |
| iiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :LOW?                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANGe                                                                                                                                                                                                      | <number value=""></number>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :UPPer<br>:UPPer?                                                                                                                                                                                         | <number value=""></number>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           | <number value=""></number>                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [:LOWer]?                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :AUTO<br>:AUTO?                                                                                                                                                                                           | <boolean>   ON   OFF</boolean>                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IME                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |
| i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :DWELI                                                                                                                                                                                                    | <number value="">   OFF</number>                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :DWELI?                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [:TEST]<br>[:TEST]?                                                                                                                                                                                       | <number value="">   OFF   CONTinue</number>                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [.1201]:                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |
| i i i :C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HANnel                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [:HIGH]                                                                                                                                                                                                   | <channel list=""></channel>                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [:HIGH]?<br>:LOW                                                                                                                                                                                          | <channel list=""></channel>                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :LOW?                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection                                                                                                                                                                                                 | DRt                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan                                                                                                                                                                                   | DRt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i>                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan                                                                                                                                                                                   | DRt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i><br>  [:BEST]?                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>                                                                                                                                                       | )Rt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i>                                                                                                                                                                                                                                                                                            |
| I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>                                                                                                                                                       | DRt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i><br>  [:BEST]?                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>                                                                                                                                             | ORt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i><br>  [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?</range<></range></range></i>                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]                                                                                                                       | ORt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i><br>  [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""></range<></range></range></i>                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>                                                                                                                                             | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i></range<></range></range></i>                                                                                                                                          |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>   <br>IMit<br>[:OPEN]<br>[:OPEN]?                                                                                                           | ORt<br>[:RANGe]<br>  [:BEST] <i><number value=""></number></i><br>  [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?</range<></range></range></i>                                                                                                                                                                                |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?                                                                                      | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i><br/><i><number value=""></number></i>   OFF</range<></range></range></i>                                                                                              |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME                                                                        | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i></range<></range></range></i>                                                                                                                                          |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?                                                                                      | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i><br/><i><number value=""></number></i>   OFF</range<></range></range></i>                                                                                              |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>ge 6 ><br>   <br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]                                                   | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i><br/><i><number value=""></number></i>   OFF</range<></range></range></i>                                                                                              |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>ge 6 ><br>   <br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]?                                                  | ORt<br>[:RANGe]<br>[ [:BEST] <number value=""><br/>[ [:BEST]?<br/>] :ALL <range 1="">,<range 2="">,<range<br>] :ALL?<br/><number value=""><br/><number value=""><br/><number value="">   OFF<br/><string data=""><br/><channel list=""></channel></string></number></number></number></range<br></range></range></number>                                 |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>ge 6 ><br>   <br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]                                                   | ORt<br>[:RANGe]<br>[ [:BEST] <i><number value=""></number></i><br>[ [:BEST]?<br>  :ALL <i><range 1="">,<range 2="">,<range< i=""><br/>  :ALL?<br/><i><number value=""></number></i><br/><i><number value=""></number></i>   OFF<br/><i><string data=""></string></i></range<></range></range></i>                                                         |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]<br>[:HIGH]?<br>:LOW;               | ORt<br>[:RANGe]<br>[ [:BEST] <number value=""><br/>[ [:BEST]?<br/>] :ALL <range 1="">,<range 2="">,<range<br>[ :ALL?<br/><number value=""><br/><number value=""><br/><number value="">   OFF<br/><string data=""><br/><channel list=""><br/><channel list=""></channel></channel></string></number></number></number></range<br></range></range></number> |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>   <br>ge 6 ><br>   <br>!OPEN]<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]<br>[:HIGH]?<br>:LOW<br>:LOW?     | ORt<br>[:RANGe]<br>[ [:BEST] <number value=""><br/>[ [:BEST]?<br/>] :ALL <range 1="">,<range 2="">,<range<br>] :ALL?<br/><number value=""><br/><number value=""><br/><number value="">   OFF<br/><string data=""><br/><channel list=""></channel></string></number></number></number></range<br></range></range></number>                                 |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>   <br>ge 6 ><br>   <br>!Mit<br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]<br>[:HIGH]?<br>:LOW;               | ORt<br>[:RANGe]<br>[ [:BEST] <number value=""><br/>[ [:BEST]?<br/>] :ALL <range 1="">,<range 2="">,<range<br>[ :ALL?<br/><number value=""><br/><number value=""><br/><number value="">   OFF<br/><string data=""><br/><channel list=""><br/><channel list=""></channel></channel></string></number></number></number></range<br></range></range></number> |
| i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i | ORRection<br>[:RESistan<br>  :SHC<br>   <br>   <br>   <br>ge 6 ><br>   <br>[:OPEN]<br>[:OPEN]?<br>:SHORt<br>:SHORt?<br>AME<br>AME?<br>HANnel<br>[:HIGH]?<br>:LOW<br>:LOW?<br>MESSage]<br>MESSage]?<br>IME | ORt<br>[:RANGe]<br>[ [:BEST] <number value=""><br/>[ [:BEST]?<br/>] :ALL <range 1="">,<range 2="">,<range<br>[ :ALL?<br/><number value=""><br/><number value=""><br/><number value="">   OFF<br/><string data=""><br/><channel list=""><br/><channel list=""></channel></channel></string></number></number></number></range<br></range></range></number> |

|          |                  | [:TEST]?            |                                                                    |
|----------|------------------|---------------------|--------------------------------------------------------------------|
| i i      | :SUB <n></n>     |                     |                                                                    |
|          | :DELet           |                     |                                                                    |
|          | :MODE<br>  :SET? | ?                   |                                                                    |
|          | .SET?<br>  :WVAC |                     |                                                                    |
|          | •                | HANnel              |                                                                    |
| i i      | ііг              | [:HIGH]             | <channel list=""></channel>                                        |
|          |                  | [:HIGH]?            |                                                                    |
|          | ! ! !            | :LOW                | <channel list=""></channel>                                        |
|          |                  | :LOW?<br>ORRection  |                                                                    |
|          |                  | [:CURRer            | ntl                                                                |
| i i      | i i i            | j :OPI              | -                                                                  |
|          |                  |                     | [:RANGe]                                                           |
|          | ! ! !            |                     | [:BEST] <number value=""></number>                                 |
|          |                  |                     | [:BEST]?<br>  :ALL <range 1="">,<range 2=""></range></range>       |
|          |                  |                     | :ALL?                                                              |
| i i      | i i i            | RCURrer             |                                                                    |
| ÌÌ       | i i i            | :OPI                |                                                                    |
|          |                  |                     | [:RANGe]                                                           |
|          |                  |                     | [:BEST] <number value=""><br/>  [:BEST]?</number>                  |
|          |                  |                     | :ALL <range 1="">,<range 2=""></range></range>                     |
| i i      | i i i            | i i                 | :ALL?                                                              |
| i i      |                  | _EVel]              | <number value=""></number>                                         |
| <u> </u> |                  | _EVel]?             |                                                                    |
|          |                  | IMit<br>:ARC        | <number value="">   OFF</number>                                   |
|          |                  | :ARC?               |                                                                    |
| i i      | i i i            | [:HIGH]             | <number value=""></number>                                         |
|          |                  | [:HIGH]?            |                                                                    |
| ļļ       |                  | :LOW                | <number value="">   OFF</number>                                   |
|          |                  | :LOW?<br>:REAL      | <number value="">   OFF</number>                                   |
|          |                  | :REAL?              |                                                                    |
| i i      | i i i            | IME                 |                                                                    |
| ÌÌ       | i i l            | :FALL               | <number value="">   OFF</number>                                   |
| ļļ       |                  | :FALL?              |                                                                    |
|          |                  | :RAMP<br>:RAMP?     | <number value="">   OFF</number>                                   |
|          |                  | [:TEST]             | <number value="">   CONTinue</number>                              |
| i i      | i i i            | [:TEST]?            | ······································                             |
| ÌÌ       | :WVDC            |                     |                                                                    |
|          | :C               | HANnel              | a han mad lint                                                     |
|          |                  | [:HIGH]<br>[:HIGH]? | <channel list=""></channel>                                        |
|          |                  | :LOW                | <channel list=""></channel>                                        |
| i i      |                  | :LOW?               |                                                                    |
| ļİ       | :C               | ORRection           |                                                                    |
| ļļ       |                  | [:CURRer            |                                                                    |
|          |                  | :OPI                | ≟N<br>[:RANGe]                                                     |
|          |                  |                     | [:RANGE]<br>  [:BEST] <number value=""></number>                   |
|          |                  |                     | [:BEST]?                                                           |
| İİ       | Iİİ              |                     | ALL <range 1="">,<range 2="">,<range 3=""></range></range></range> |
|          |                  |                     |                                                                    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         | :ALL?<br><number value=""></number>                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :LIMit<br>  :ARC                                                                                                                                                                                                                                        | <number value="">   OFF</number>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :ARC?<br>  [:HIGH]                                                                                                                                                                                                                                      | <number value=""></number>                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:HIGH]?<br>  :LOW<br>  :LOW?                                                                                                                                                                                                                           | <number value="">   OFF</number>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :TIME<br>  :DWELI<br>  :DWELI?                                                                                                                                                                                                                          | <number value="">   OFF</number>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :FALL<br>  :FALL?                                                                                                                                                                                                                                       | <number value="">   OFF</number>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :RAMP<br>  :RAMP?                                                                                                                                                                                                                                       | <number value="">   OFF</number>                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:TEST]<br>  [:TEST]?                                                                                                                                                                                                                                   | <number value="">   CONTinue</number>                                                                                                                                                                                                               |
| :IR<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :CHANnel                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:HIGH]<br>  [:HIGH]?                                                                                                                                                                                                                                   | <channel list=""></channel>                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :LOW<br>  :LOW?                                                                                                                                                                                                                                         | <channel list=""></channel>                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :CORRection                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :OP                                                                                                                                                                                                                                                     | [:RANGe]                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         | <pre>  [:BEST] <number value="">   [:BEST]?   :ALL <range 1="">,<range 2="">,<range< pre=""></range<></range></range></number></pre>                                                                                                                |
| 3> <range 4=""> <range 5=""></range></range>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ا ا ا<br><range 6="">,<rang< td=""><td></td></rang<></range>                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         | :ALL?<br><number value=""></number>                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:LEVel]?<br>:LIMit<br>  :HIGH                                                                                                                                                                                                                          | :ALL?                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]                                                                                                                                                                                                  | :ALL?<br><number value=""></number>                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]<br>  [:LOW]?<br>:RANGe                                                                                                                                                                           | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""></number></number></number>                                                                                                                                             |
| I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?                                                                                                                                                  | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""></number></number></number></number>                                                                                                              |
| I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I       I     I <td>[:LEVel]?<br/>:LIMit<br/>  :HIGH<br/>  :LOW]<br/>  [:LOW]<br/>  [:LOW]?<br/>:RANGe<br/>  :UPPer<br/>  :UPPer?<br/>  [:LOWer]</td> <td>  :ALL?<br/><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><number value=""></number></number></number></number></number></td> | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :LOW]<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  [:LOWer]                                                                                                                                     | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><number value=""></number></number></number></number></number>                                                                               |
| I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       <                                                                                                                                                                                                                                 | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  :LOWer]<br>  [:LOWer]<br>  :AUTO<br>  :AUTO?                                                                                                | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><number value=""></number></number></number></number></number>                                                                               |
| I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       <                                                                                                                                                                                                                                 | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :LOW]<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  [:LOWer]<br>  [:LOWer]<br>  :AUTO<br>  :AUTO?<br>:TIME<br>  :FALL                                                                            | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><number value=""></number></number></number></number></number>                                                                               |
| I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       <                                                                                                                                                                                                                                 | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  :LOWer]<br>  :LOWer]<br>  :LOWer]<br>  :AUTO<br>  :AUTO?<br>:TIME<br>  :FALL<br>  :FALL?<br>  :RAMP                                         | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><number value=""><br/><boolean>   ON   OFF</boolean></number></number></number></number></number>                                            |
| I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       <                                                                                                                                                                                                                                 | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  :LOWer]<br>  :LOWer]<br>  :LOWer]<br>  :AUTO<br>  :AUTO?<br>:TIME<br>  :FALL<br>  :FALL?                                                                 | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><hoolean>   ON   OFF<br/><number value="">   OFF</number></hoolean></number></number></number></number>                                      |
| I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       I       I       I         I       <                                                                                                                                                                                                                                 | [:LEVel]?<br>:LIMit<br>  :HIGH<br>  :HIGH?<br>  [:LOW]<br>  [:LOW]?<br>:RANGe<br>  :UPPer<br>  :UPPer?<br>  [:LOWer]<br>  :LOWer]<br>  :LOWer]<br>  :AUTO<br>  :AUTO?<br>:TIME<br>  :FALL<br>  :FALL<br>  :FALL?<br>  :RAMP?<br>  [:TEST]<br>  [:TEST]? | :ALL?<br><number value=""><br/><number value="">   OFF<br/><number value=""><br/><number value=""><br/><boolean>   ON   OFF<br/><number value="">   OFF<br/><number value="">   OFF</number></number></boolean></number></number></number></number> |

|                                                                                                                                                                               | [:HIGH]              | <channel list=""></channel>                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|
|                                                                                                                                                                               | [:HIGH]?             |                                                                        |
|                                                                                                                                                                               | :LOW<br>:LOW?        | <channel list=""></channel>                                            |
|                                                                                                                                                                               | CORRection           | _                                                                      |
|                                                                                                                                                                               | RESistan:]<br>  SHC: |                                                                        |
|                                                                                                                                                                               |                      | [:RANGe]                                                               |
| iiiiii                                                                                                                                                                        | i i                  | [:BEST] <number value=""></number>                                     |
|                                                                                                                                                                               |                      | [:BEST]?                                                               |
| 3>, <range 4="">,<range 5="">,<rar< td=""><td>   <br/>nae 6 &gt;</td><td>  :ALL <range 1="">,<range 2="">,<range< td=""></range<></range></range></td></rar<></range></range> | <br>nae 6 >          | :ALL <range 1="">,<range 2="">,<range< td=""></range<></range></range> |
|                                                                                                                                                                               |                      | :ALL?                                                                  |
|                                                                                                                                                                               | IMit                 |                                                                        |
|                                                                                                                                                                               | [:HIGH]<br>[:HIGH]?  | <number value=""></number>                                             |
|                                                                                                                                                                               | :LOW                 | <number value="">   OFF</number>                                       |
|                                                                                                                                                                               | :LOW?                |                                                                        |
|                                                                                                                                                                               | RANGe<br>:UPPer      | <number value=""></number>                                             |
|                                                                                                                                                                               | :UPPer?              |                                                                        |
| iiiii                                                                                                                                                                         |                      | <number value=""></number>                                             |
|                                                                                                                                                                               | [:LOWer]?<br>:AUTO   | chaoloons I ON LOEE                                                    |
|                                                                                                                                                                               | :AUTO<br>:AUTO?      | <boolean>   ON   OFF</boolean>                                         |
| r:                                                                                                                                                                            | ΓIME                 |                                                                        |
|                                                                                                                                                                               | :DWELI               | <number value="">   OFF</number>                                       |
|                                                                                                                                                                               | :DWELI?<br>[:TEST]   | <number value="">   OFF   CONTinue</number>                            |
|                                                                                                                                                                               | [:TEST]?             |                                                                        |
|                                                                                                                                                                               |                      |                                                                        |
|                                                                                                                                                                               | CHANnel<br>[:HIGH]   | <channel list=""></channel>                                            |
|                                                                                                                                                                               | [:HIGH]?             |                                                                        |
| iiiii                                                                                                                                                                         | :LOW                 | <channel list=""></channel>                                            |
|                                                                                                                                                                               | :LOW?<br>CORRection  |                                                                        |
|                                                                                                                                                                               | :CAPacita            | ncel                                                                   |
| iiiii                                                                                                                                                                         | :OPE                 | N                                                                      |
|                                                                                                                                                                               |                      | [:RANGe]                                                               |
|                                                                                                                                                                               |                      | [:BEST] <number value=""><br/>  [:BEST]?</number>                      |
|                                                                                                                                                                               | İİ                   | ALL <range 1="">,<range 2="">,<range 3=""></range></range></range>     |
|                                                                                                                                                                               |                      | :ALL?                                                                  |
|                                                                                                                                                                               | :SAN<br>  :SAN       |                                                                        |
|                                                                                                                                                                               | _IMit                |                                                                        |
|                                                                                                                                                                               |                      | <number value=""></number>                                             |
|                                                                                                                                                                               | [:OPEN]?<br>:SHORt   | <number value="">   OFF</number>                                       |
|                                                                                                                                                                               | :SHORt?              |                                                                        |
| I I I I IWT                                                                                                                                                                   |                      |                                                                        |
|                                                                                                                                                                               | NAME<br>NAME?        | <string data=""></string>                                              |
|                                                                                                                                                                               | CHANnel              |                                                                        |
|                                                                                                                                                                               | [:HIGH]              | <channel list=""></channel>                                            |
|                                                                                                                                                                               | [:HIGH]?             |                                                                        |

| ļ | ļ | ļ | ļ | ļļ     | :LOW      | <channel list=""></channel>           |
|---|---|---|---|--------|-----------|---------------------------------------|
|   |   |   |   |        | :LOW?     |                                       |
|   |   |   |   | :PAuse |           |                                       |
|   |   |   |   |        | IESSage]  | <string data=""></string>             |
|   |   |   |   | [:]    | MESSage]? |                                       |
|   |   |   |   | :TI    | ME        |                                       |
|   |   |   |   |        | [:TEST]   | <number value="">   CONTinue</number> |
|   |   |   |   |        | [:TEST]?  |                                       |

## 8.5.2 Command Description

#### • IEEE 488.2 Commands

#### \*CLS

It clears the data structure of status in the following actions:

- Clear the error queue.
- Clear the standard event register.
- Clear the byte register except MAV bit (bit 4)

#### \*ESE <decimal data>

It sets the value for standard event enable register. The value is a <decimal data> within  $0\sim255$ .

#### \*ESE?

It queries the standard event enable register value of device. The output format is <decimal data> within 0~255.

#### \*ESR?

It queries the standard event register value of device. The register is cleared to 0 when this command is executed. The output format is <decimal data> within  $0\sim255$ .

#### \*IDN?

It reads the basic data of device. The output format is divided by comma into 4 columns, which are manufacturer, device model no., serial no. and firmware version.

#### \*OPC

It completes the operation.

#### \*OPC?

It queries the operation for completeness. An ASCII character "1" is output when done.

#### \*PSC 0 / 1

It clears the power on state.

#### \*PSC?

It queries the power on state for clearing. The output format is an ASCII character "1" or "0".

#### \*RST

It resets the device by stopping the test.

#### \*RCL <decimal data>

It is the command of read back. This command reads back the settings saved in the

memory of the device. The parameter is the memory serial no.

#### \*SAV <decimal data>

It is the command of save. This command is to save the settings at present of the device to memory. The parameter is the memory serial no.

#### \*SRE <decimal data>

It sets the value for service request register. The value is a <decimal data> within  $0\sim255$ .

#### \*SRE?

It reads the value of service request enable register. The output format is <decimal data> within 0~255.

#### \*STB?

It reads the value of status bit register. The output format is <decimal data> within  $0\sim255$ .

#### SCPI Commands

#### :MEMory:DELete[:Name] <name>

It deletes the parameter data specified by <name> in main memory. <name> is a string.

#### :MEMory:DELete:LOCAtion <register number>

It deletes the parameter data specified by <register number> in main memory. <register number> is an integer.

#### :MEMory:STATe:DEFine <name>, <register number>

It sets a name for memory specified by <register number>.

#### :MEMory:STATe:DEFine? <name>

It queries the memory's <register number> specified by <name>.

#### :MEMory:FREE:STATe?

It queries the unused capacity in main memory.

#### :MEMory:NSTates?

It queries the capacity of main memory. The value is the maximum plus 1 of the applicable parameters for \*SAV and \*RCL commands.

#### :SYSTem:ERRor[:NEXT]?

This command reads the messages in Error Queue. See Section 8.6 Error Messages for the returned messages.

#### :SYSTem:KLOCk <boolean> | ON | OFF

It locks the panel control. The command does not affect the Remote/Local state of GPIB.

#### :SYSTem:KLOCk?

It queries if the panel is locked.

#### :SYSTem:LOCK:OWNer?

It queries if the Scanner is in panel control or remote control state.

#### :SYSTem: LOCK:RELease

It switches back to panel control state.

#### :SYSTem:LOCK:REQuest?

It switches to remote control state. It returns 1 if success or it returns 0.

#### :SYSTem:TCONtrol:AGC[:SOFTware] <boolean> | ON | OFF

It sets if enabling the software AGC function.

#### :SYSTem:TCONtrol:AGC[:SOFTware]?

It queries if the software AGC function is enabled.

#### :SYSTem:TCONtrol:DCRBalance <number value>

It sets the value of DCR Balance in the unit of ohm.

#### :SYSTem:TCONtrol:DCRBalance?

It queries the value of DCR Balance in the unit of ohm.

#### :SYSTem:TCONtrol:FAIL:OPERation RESTart | CONTinue | STOP

It sets the action after the test step is judged as FAIL.

When set to *RESTart*, it will stop test after detected FAIL without pressing [STOP] and press [START] can begin the test.

When set to *CONTinue*, it won't stop test after detected FAIL. It will continue the steps afterwards.

When set to *STOP*, it will stop test after detected FAIL and it is necessary to press [STOP] first and follow by [START] to begin the test.

#### :SYSTem:TCONtrol:FAIL:OPERation?

It queries the setting of AFTER FAIL.

#### :SYSTem:TCONtrol:FTERminal <boolean> | ON | OFF

It enables the DCR 4-wire measurement function.

#### :SYSTem:TCONtrol:FTERminal?

It queries if the DCR 4-wire measurement function is enabled.

:SYSTem:TCONtrol: GFI <br/>
t sets if enabling GFI.

#### :SYSTem:TCONtrol: GFI?

It queries if GFI is enabled with 0 or 1 returned. (0 means GFI is disabled and 1 means GFI is enabled.)

:SYSTem:TCONtrol: RJUDgment <boolean> | ON | OFF

It sets if enabling RAMP JUDGMENT.

#### :SYSTem:TCONtrol: RJUDgment?

It queries if RAMP JUDGMENT is enabled with 0 or 1 returned. (0 means OFF that is disabled and 1 means ON.)

:SYSTem:TCONtrol:TEMPerature[:COMPensation] [:ENABle] OFF / MANUal / AUTO It enables the temperature compensation function.

#### :SYSTem:TCONtrol:TEMPerature[:COMPensation] [:ENABle]?

It queries if the temperature compensation function is enabled.

:SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT C / F It sets the temperature unit.

#### :SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT?

It queries the temperature unit.

:SYSTem:TCONtrol:TEMPerature[:COMPensation]:TCOefficient <*numeric value*> It sets the temperature coefficient with the unit in ppm.

:SYSTem:TCONtrol:TEMPerature[:COMPensation]:TCOefficient? It queries the temperature coefficient with the unit in ppm.

:SYSTem:TCONtrol:TEMPerature[:COMPensation]:BTEMperature <*numeric value*> It sets the standard site temperature in the unit of °C or °F following the setting of :SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT.

#### :SYSTem:TCONtrol:TEMPerature[:COMPensation]: BTEMperature?

It queries the standard site temperature in the unit of °C or °F following the setting of :SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT.

#### :SYSTem:TCONtrol:TEMPerature[:COMPensation]:ETEMperature < numeric value>

It sets the environment temperature in the unit of °C or °F following the setting of :SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT. Use this parameter when :SYSTem:TCONtrol:TEMPerature[:COMPensation] [:ENABle] set to MANUal.

#### :SYSTem:TCONtrol:TEMPerature[:COMPensation]:ETEMperature?

It queries the environment temperature in the unit of °C or °F following the setting of :SYSTem:TCONtrol:TEMPerature[:COMPensation]:UNIT.

#### :SYSTem:TCONtrol: TIME:PASS <numeric\_value>

It sets the time for PASS HOLD duration. The unit is second.

#### :SYSTem:TCONtrol: TIME:PASS?

It queries the time for PASS HOLD duration.

#### :SYSTem:TCONtrol:TRIGger[:DELay] <numeric\_value>

It sets the time delayed for trigger. The unit is second.

#### :SYSTem:TCONtrol: TRIGger[:DELay]?

It queries the time delayed for trigger. The unit is second.

#### :SYSTem:TCONtrol:WVAC:FREQuency <numeric value>

It sets the output voltage frequency when under AC withstand voltage test. The unit is Hz.

#### :SYSTem:TCONtrol: WVAC:FREQuency?

It queries the output voltage frequency when under AC withstand voltage test. **:SYSTem:TCONtrol:WRANge[:AUTO]** <br/> *sets if enabling the withstand voltage auto range function.* 

#### :SYSTem:TCONtrol:WRANge[:AUTO]?

It queries if the withstand voltage auto range function is enabled with 0 or 1 returned. (0 means OFF is disabled and 1 means ON.)

#### :SYSTem:VERSion?

It queries the SCPI version supported of this device.

#### [:SOURce]:SAFety:FETCh? [<item>][, <item>]

It queries the measurement result of the Scanner. <item> is the string as listed below:

| String    | Returned Data                                                      |
|-----------|--------------------------------------------------------------------|
| STEP      | The present STEP No.                                               |
| MODE      | The present MODE                                                   |
| OMETerage | The present reading of output meter (DCR resistance reading)       |
| MMETerage | The present reading of measure meter (The resistance after DCR     |
|           | temperature compensation.)                                         |
| RMETerage | The present reading of real current meter (Environment temperature |
|           | when in DCR.)                                                      |
| RELApsed  | The time executed for RAMP                                         |
| RLEAve    | The time remained for RAMP                                         |
| DELApsed  | The time executed for DWELL                                        |
| DLEAve    | The time remained for DWELL                                        |
| TELApsed  | The time executed for TEST                                         |
| TLEAve    | The time remained for TEST                                         |
| FELapsed  | The time executed for FALL                                         |
| FLEave    | The time remained for FALL                                         |

#### [:SOURce]:SAFety:RESult:ALL[:JUDGment]?

It queries all judgment results. The return format is First Step Result, Second Step Result, ..., Last Step Result. The meaning of Code is listed as below:

| Mode         | W٧  | WVAC |     | WVDC IR |     | DCR |     | OSC |     | IWT |     | ALL |     |     |
|--------------|-----|------|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code         | HEX | DEC  | HEX | DEC     | HEX | DEC | HEX | DEC | HEX | DEC | HEX | DEC | HEX | DEC |
| UNCOMPLETED  |     |      |     |         |     |     |     |     |     |     |     |     | 70  | 112 |
| ABORT        |     |      |     |         |     |     |     |     |     |     |     |     | 71  | 113 |
| VOLTAGE IS 0 |     |      |     |         |     |     |     |     |     |     |     |     | 72  | 114 |
| TESTING      |     |      |     |         |     |     |     |     |     |     |     |     | 73  | 115 |
| PASS/SKIPPED |     |      |     |         |     |     |     |     |     |     |     |     | 74  | 116 |
| /COMPLETED   |     |      |     |         |     |     |     |     |     |     |     |     |     |     |
| HIGH FAIL    | 21  | 33   | 31  | 49      | 41  | 65  | 11  | 17  |     |     |     |     |     |     |
| LOW FAIL     | 22  | 34   | 32  | 50      | 42  | 66  | 12  | 18  |     |     |     |     |     |     |
| ARC FAIL     | 23  | 35   | 33  | 51      |     |     |     |     |     |     |     |     |     |     |
| REAL FAIL    | 2A  | 42   |     |         |     |     |     |     |     |     |     |     |     |     |
| PROBE FAIL   |     |      |     |         |     |     | 14  | 20  |     |     |     |     |     |     |
| OUTPUT FAIL  | 21  | 33   | 31  | 49      | 42  | 66  |     |     |     |     |     |     |     |     |
| GFI FAIL     | 24  | 36   | 34  | 52      | 44  | 68  |     |     |     |     |     |     |     |     |
| SHORT        | 24  | 36   | 34  | 52      | 44  | 68  |     |     | 61  | 97  |     |     |     |     |
| OPEN         |     |      |     |         |     |     |     |     | 62  | 98  |     |     |     |     |
| IWT FAIL     |     |      |     |         |     |     |     |     |     |     | 51  | 81  |     |     |
| DWX ERROR    |     |      |     |         |     |     |     |     |     |     | 54  | 84  |     |     |

#### 19035-L/19035-ML Judgment Code

**Note:** Since the DCR Balance Fail is the combined judgment result of several steps instead of a single step, so please use [:SOURce]:SAFety:RESult:TOTal[:JUDGment]? command to read the judgment result.

#### [:SOURce]:SAFety:RESult:ALL:MMETerage?

It queries the MEASURE METER readings of all STEPs. It is the temperature compensated resistance in DCR mode. If the temperature compensation is not enabled, it will be resistance reading.

#### [:SOURce]:SAFety:RESult:ALL:RMETerage?

It queries the REAL CURRENT METER readings of all STEPs. It is the environment temperature when in DCR mode.

#### [:SOURce]:SAFety:RESult:ALL:MODE?

It queries the MODE of all STEPs and returns string, WVAC|WVDC|IR|DCR|OSC|IWT|PA.

#### [:SOURce]:SAFety:RESult:ALL:OMETerage?

It queries the OUTPUT METER readings of all STEPs. It is the resistance reading when in DCR mode.

#### [:SOURce]:SAFety:RESult:ALL:TIME[:ELAPsed]:DWELI?

It queries the DWELL of all STEPs.

#### [:SOURce]:SAFety:RESult:ALL:TIME[:ELAPsed]:FALL?

It queries the voltage fall time of all STEPs.

#### [:SOURce]:SAFety:RESult:ALL:TIME[:ELAPsed]:RAMP?

It queries the voltage ramp time of all STEPs.

#### [:SOURce]:SAFety:RESult:ALL:TIME[:ELAPsed][:TEST]?

It queries the test time of all STEPs.

#### [:SOURce]:SAFety:RESult:AREPort <br/> <boolean> | ON | OFF

It sets if auto reporting the test result. (For RS232 interface only)

#### [:SOURce]:SAFety:RESult:AREPort?

It queries if the device is auto reporting the test result with 1 or 0 returned. (For RS232 interface only)

#### [:SOURce]:SAFety:RESult:TOTal[:JUDGment]?

It queries the final judgment result. When the return is 0 it indicates there is no test result, -1 indicates FAIL and 1 indicates PASS.

#### [:SOURce]:SAFety:RESult:COMPleted?

It queries if the device has completed all test steps by returning 1 or 0.

#### [:SOURce]:SAFety:RESult[:LAST][:JUDGment]?

It queries the judgment code of the last executed STEP.

#### [:SOURce]:SAFety:RESult: STEP<n>[:MAIN][:JUDGment]?

#### [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>[:JUDGment]?

It queries the judgment result of selected STEP. <s> is the value data, 1 means A, 2 means B and so forth. For instance, :SOURce:SAFety:RESult: STEP1:SUB2:JUDGment? means to query the judgment result of STEP 1.B.

[:SOURce]:SAFety:RESult:STEP<n>[:MAIN]:MMETerage? [:SOURce]:SAFety:RESult:STEP<n>:SUB<s>:MMETerage? It queries the MEASURE METER readings of selected STEP.

[:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:RMETerage? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:RMETerage? It queries the REAL CURRENT METER readings of selected STEP.

:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:OMETerage? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:OMETerage? It queries the OUTPUT METER readings of selected STEP.

[:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:TIME[:ELAPsed]:DWELI? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:TIME[:ELAPsed]:DWELI? It queries the DWELL time of selected STEP.

[:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:TIME[:ELAPsed]:FALL? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:TIME[:ELAPsed]:FALL? It queries the voltage fall time of selected STEP.

[:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:TIME[:ELAPsed]:RAMP? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:TIME[:ELAPsed]:RAMP? It queries the voltage ramp time of selected STEP.

[:SOURce]:SAFety:RESult: STEP<n>[:MAIN]:TIME[:ELAPsed][:TEST]? [:SOURce]:SAFety:RESult: STEP<n>:SUB<s>:TIME[:ELAPsed][:TEST]? It queries the test time of selected STEP.

#### [:SOURce]:SAFety:SNUMber?

It queries the STEP set in the working memory including the sum of MAIN STEP and SUB STEP.

#### [:SOURce]:SAFety:STARt[:ONCE]

It starts the test.

#### [:SOURce]:SAFety:STARt:CORRection:OPEN GET / OFF

When the parameter is set to GET, it gets the correction of OPEN. The main system may output high voltage at the time, and the correction is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STARt:CORRection:OPEN?

It queries if OPEN correction is enabled.

#### [:SOURce]:SAFety:STARt:CORRection:SHORt GET | OFF

It gets the correction of SHORT when the parameter is set to GET. The main system may output high voltage at the time, and the correction is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STARt:CORRection:SHORt?

It queries if SHORT correction is enabled.

#### [:SOURce]:SAFety:STARt:CORRection:SAMPle GET

It gets the sample correction when the parameter is set to GET. The main system may output high voltage at the time.

#### [:SOURce]:SAFety:STARt:CORRection:SAMPle?

It queries if sample correction is enabled.

#### [:SOURce]:SAFety:STOP

It stops the test.

#### [:SOURce]:SAFety:STATus?

It queries the status of current device. The returned data is RUNNING or STOPPED.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DELete [:SOURce]:SAFety:STEP<n>:SUB<s>:DELete

[:SOURce]:SAFety:STEP<n>[:MAIN]:DELete command will delete the <n> STEPs and the SUB STEPs underneath, the STEPs following <n> will forward to fill. [:SOURce]:SAFety:STEP<n>:SUB<s>:DELete command will delete the <n>.<s> STEPs and the STEPs following <n>.<s> will forward to fill. <s> is a numeric data, in which 1 means A, 2 indicates B so forth. Ex: SOURce:SAFety:STEP2:SUB3:DELete means to delete the STEP of 2.C.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:MODE?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:MODE?

It queries the MODE of selected STEP and the returned data is WVAC, WVDC, IR, DCR, OSC, IWT and PA.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:SET?

[:SOURce]:SAFety:STEP<n>:SUB<s>:SET?

It queries all settings of selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CHANnel[: HIGH] <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CHANnel[: HIGH] <channel\_list> It sets the high voltage output channel status during scan test for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CHANnel[: HIGH]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CHANnel[: HIGH]? It queries the high voltage output channel status during scan test for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CHANnel: LOW <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CHANnel: LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CHANnel: LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CHANnel: LOW? It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection[:CURRent]:OPEN[:RANG e][:BEST]<number value>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection[:CURRent]:OPEN[:RAN Ge][:BEST] <number value>

It sets the open current for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.03A$ . This command will set the open current of all ranges to this value. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection[:CURRent]:OPEN[:RANG e][:BEST]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection[:CURRent]:OPEN[:RAN Ge][:BEST]?

It queries the open current of minimum current range for the selected STEP. The unit is ampere.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection[:CURRent]:OPEN[:RANG e]:ALL <range 1>,<range 2>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection[:CURRent]:OPEN[:RAN Ge]:ALL <range 1>,<range 2>

It sets the open current of each range for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.03A$ . This command requires 2 parameters, the first parameter is the open current of small current range and the second parameter is the open current of large current range. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection[:CURRent]:OPEN[:RANG e]:ALL?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection[:CURRent]:OPEN[:RAN Ge]:ALL?

It queries the open current of selected STEP. The unit is ampere. This query command will return 2 open currents with comma as the separator. The first is the open current of small current range and the second is for large current range.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection:RCURrent:OPEN[:RANGe ][:BEST] <number value>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection:RCURrent:OPEN[:RANG e][:BEST]<number value>

It sets the open real current for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.03A$ . This command will set the open real current of all ranges to this value. Please be noted that the device may clear this open real current if the test parameter is changed. It is suggested to set this open real current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection:RCURrent:OPEN[:RANGe ][:BEST]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection:RCURrent:OPEN[:RANG e][:BEST]?

It queries the open real current of minimum current range for the selected STEP. The unit is ampere.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:CORRection:RCURrent:OPEN[:RANGe ]:ALL <range 1>,<range 2>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:CORRection:RCURrent:OPEN[:RANG e]:ALL <range 1>,<range 2>

It sets the open real current of each range for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.03A$ . This command requires 2 parameters, the first parameter is the open real current of small current range and the second parameter is the open real current of large current range. Please be noted that the device may clear this open real current if the test parameter is changed. It is suggested to set this open real current after all test parameters are set.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC[:LEVel] <-numeric value> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC[:LEVel] <-numeric value> It sets the required voltage during withstand voltage AC test for the selected STEP. The unit is volt.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC[:LEVel]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC[:LEVel]?

It queries the required voltage during withstand voltage AC test for the selected STEP. The unit is volt.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:ARC < numeric value> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:ARC < numeric value> / OFF It sets the ARC test of the selected STEP. The unit is ampere. The ARC setting is disabled when the parameter is set to OFF

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:ARC?

[:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:ARC? It gueries the ARC test of the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit[:HIGH] <-numeric value> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit[:HIGH] <-numeric value> It sets the high limit of leakage current in withstand voltage AC for the selected STEP. The unit is ampere.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit[:HIGH]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit[:HIGH]?

It queries the high limit of leakage current in withstand voltage AC for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:LOW <*numeric value*> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:LOW <*numeric value*> / OFF It sets the low limit of leakage current in withstand voltage AC for the selected STEP. The unit is ampere. The Low Limit setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:LOW?

It queries the low limit of leakage current in withstand voltage AC for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:REAL <*numeric value*> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:REAL<*numeric value*> / OFF It sets the high limit of real leakage current in withstand voltage AC for the selected STEP. The unit is ampere. The Real Current setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:LIMit:REAL? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:LIMit:REAL?

It queries the high limit of real leakage current in withstand voltage AC for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME:FALL <*numeric value> | OFF* [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME:FALL<*numeric value> | OFF* It sets the time required for the set voltage to fall to the low voltage for the selected STEP. The unit is second. The Fall Time setting is disabled when the parameter is OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME:FALL?

[:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME:FALL?

It queries the time required for the set voltage to fall to the low voltage for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME:RAMP < numeric value> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME:RAMP < numeric value> / OFF It sets the time required to ramp to the voltage set for test for the selected STEP. The unit is second. The Ramp Time setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME:RAMP?

[:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME:RAMP?

It queries the time required to ramp to the voltage set for test for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME[:TEST] <numeric value> / CONTinue

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME[:TEST] <numeric value> | CONTinue

It sets the time required for test for the selected STEP. The unit is second. The test runs continuously when the parameter is set to CONTinue.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVAC:TIME[:TEST]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVAC:TIME[:TEST]? It queries the time required for test for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CHANnel[: HIGH] <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CHANnel[: HIGH] <channel\_list> It sets the status of high voltage output channel during scan test for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CHANnel[: HIGH]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CHANnel[: HIGH]? It queries the status of high voltage output channel during scan test for the selected STEP. [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CHANnel: LOW <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CHANnel: LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CHANnel: LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CHANnel: LOW?

It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CORRection[:CURRent]:OPEN[:RANG e][:BEST]<number value>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CORRection[:CURRent]:OPEN[:RAN Ge][:BEST] <number value>

It sets the open current for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.01A$ . This command will set the open current of all ranges to this value. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CORRection[:CURRent]:OPEN[:RANG e][:BEST]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CORRection[:CURRent]:OPEN[:RAN Ge][:BEST]?

It queries the open current of minimum current range for the selected STEP. The unit is ampere.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CORRection[:CURRent]:OPEN[:RANG e]:ALL <range 1>,<range 2>,<range 3>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CORRection[:CURRent]:OPEN[:RAN Ge]:ALL <range 1>,<range 2>,<range 3>

It sets the open current of each range for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.01A$ . This command requires 3 parameters, the first parameter is the open current of small current range. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:CORRection[:CURRent]:OPEN[:RANG e]:ALL?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:CORRection[:CURRent]:OPEN[:RAN Ge]:ALL?

It queries the open current of selected STEP. The unit is ampere. This query command will return 3 open currents with comma as the separator. The first is the open current of small current range.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC[:LEVel] <-numeric value> [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC[:LEVel] <-numeric value> It sets the voltage required during withstand voltage DC test for the selected STEP. The unit is volt.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC[:LEVel]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC[:LEVel]?

It queries the voltage required during withstand voltage DC test for the selected STEP. The unit is volt.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:LIMit:ARC <numeric value> | OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:LIMit:ARC <numeric value> | OFF It sets the ARC test of the selected STEP. The unit is ampere. The ARC setting is disabled when the parameter is set to OFF

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:LIMit:ARC? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:LIMit:ARC?

It gueries the ARC test of the selected STEP. The unit is ampere.

[:SOURce:]SAFety:STEP<n>[:MAIN]:WVDC:LIMit[:HIGH] < numeric value > [:SOURce:]SAFety:STEP<n>:SUB<s>:WVDC:LIMit[:HIGH] < numeric value > It sets the high limit of leakage current in withstand voltage DC for the selected STEP. The unit is ampere.

#### [:SOURce:]SAFety:STEP<n>[:MAIN]:WVDC:LIMit[:HIGH]?

[:SOURce:]SAFety:STEP<n>:SUB<s>:WVDC:LIMit[:HIGH]? It queries the high limit of leakage current in withstand voltage DC for the selected STEP. The unit is ampere.

[:SOURce:]SAFety:STEP<n>[:MAIN]:WVDC:LIMit:LOW <numeric value> | OFF [:SOURce:]SAFety:STEP<n>:SUB<s>:WVDC:LIMit:LOW <numeric value> | OFF It sets the low limit of leakage current in withstand voltage DC for the selected STEP. The unit is ampere. The Low Limit setting is disabled when the parameter is set to OFF.

#### [:SOURce:]SAFety:STEP<n>[:MAIN]:WVDC:LIMit:LOW? [:SOURce:]SAFety:STEP<n>:SUB<s>:WVDC:LIMit:LOW?

It queries the low limit of leakage current in withstand voltage DC for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:DWELI <*numeric value*> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:DWELI <*numeric value*> / OFF It sets the time required for DWELL for the selected STEP. The unit is second. The Dwell Time setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:DWELI?

[:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:DWELI? It gueries the time required for DWELL for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:FALL <*numeric value*> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:FALL <*numeric value*> / OFF It sets the time required for the set voltage to fall to the low voltage for the selected STEP. The unit is second. The Fall Time setting is disabled when the parameter is OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:FALL?

[:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:FALL?

It queries the time required for the set voltage to fall to the low voltage for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:RAMP <*numeric value*> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:RAMP <*numeric value*> / OFF It sets the time required to ramp to the voltage set for test for the selected STEP. The unit is second. The Ramp Time setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME:RAMP? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME:RAMP?

It queries the time required to ramp to the voltage set for test for the selected STEP. The unit is second.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME[:TEST] <numeric value> / CONTinue

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME[:TEST] <numeric value> /

CONTinue

It sets the time required for test for the selected STEP. The unit is second. The test runs continuously when the parameter is set to CONTinue.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:WVDC:TIME[:TEST]? [:SOURce]:SAFety:STEP<n>:SUB<s>:WVDC:TIME[:TEST]? It gueries the time required for test for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CHANnel[: HIGH] <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CHANnel[: HIGH] <channel\_list> It sets the status of high voltage output channel during scan test for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CHANnel[: HIGH]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CHANnel[: HIGH]?

It queries the status of high voltage output channel during scan test for the selected STEP.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CHANnel: LOW <channel\_list>

[:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CHANnel: LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CHANnel: LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CHANnel: LOW?

It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CORRection:CURRent:OPEN[:RANGe][:BE ST] <number value>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CORRection:CURRent:OPEN[:RANGe][:B EST]<number value>

It sets the open current for the selected STEP. The unit is ampere and the valid range is  $0 \sim 0.01A$ . This command will set the open current of all ranges to this value. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CORRection:CURRent:OPEN[:RANGe][:BE ST]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CORRection:CURRent:OPEN[:RANGe][:B EST]?

It queries the open current of minimum current range for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CORRection:CURRent:OPEN[:RANGe]:AL *crange 1>,<range 2>,<range 3>,<range 4>,<range 5>,<range 6>,<range 7>* [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CORRection:CURRent:OPEN[:RANGe]:A LL *crange 1>,<range 2>,<range 3>,<range 4>,<range 5>,<range 6>,<range 7>* It sets the open current of each range for the selected STEP. The unit is ampere and the valid range is 0 ~ 0.01A. This command requires 7 parameters, the first parameter is the open current of minimum current range. Please be noted that the device may clear this open current if the test parameter is changed. It is suggested to set this open current after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:CORRection:CURRent:OPEN[:RANGe]:AL L?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:CORRection:CURRent:OPEN[:RANGe]:A LL?

It queries the open current of selected STEP. The unit is ampere. This query command will return 7 open currents with comma as the separator. The first is the open current of minimum current range.

#### 

It sets the voltage required for insulation resistance test for the selected STEP. The unit is volt.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR[:LEVel]? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR[:LEVel]?

It queries the voltage required for insulation resistance test for the selected STEP. The unit is volt.

# [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:LIMit:HIGH<numeric value> | OFF[:SOURce]:SAFety:STEP<n>:SUB<s>:IR:LIMit:HIGH<numeric value> | OFFIt sets the high limit of insulation resistance for the selected STEP. The unit is ohm.TheHigh Limit setting is disabled when the parameter is set to OFF.OFF

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:LIMit:HIGH? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:LIMit:HIGH?

It queries the high limit of insulation resistance for the selected STEP. The unit is ohm.

### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:LIMit[:LOW]

<numeric value>

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:LIMit[:LOW] <-numeric value> It sets the low limit of insulation resistance for the selected STEP. The unit is ohm.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:LIMit[:LOW]? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:LIMit[:LOW]?

It queries the low limit of insulation resistance for the selected STEP. The unit is ohm.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe:UPPer <-numeric value> [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe:UPPer <-numeric value>

It sets the current range for test for the selected STEP. The unit is ampere. The set current range should be larger than the input current.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe:UPPer? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe:UPPer? It gueries the current range for test for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe[:LOWer] <-numeric value> [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe[:LOWer] <-numeric value> It sets the current range for test for the selected STEP. The unit is ampere. The set current range should be smaller than the input current.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe[:LOWer]? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe[:LOWer]?

It queries the current range of test for the selected STEP. The unit is ampere.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe:AUTO <boolean> | ON |OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe:AUTO <boolean> | ON |OFF It sets the current range for test to auto for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:RANGe:AUTO? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:RANGe:AUTO? It gueries if the current range for test is set to auto for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME:FALL<numeric value> | OFF[:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME:FALL<numeric value> | OFFIt sets the time required for the set voltage to fall to the low voltage for the selected STEP.The unit is second.The unit is second.The Fall Time setting is disabled when the parameter is OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME:FALL?

[:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME:FALL? It queries the time required for the set voltage to fall to the low voltage for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME:RAMP <-numeric value> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME:RAMP <-numeric value> / OFF It sets the time required to ramp to the voltage set for test for the selected STEP. The unit is second. The Ramp Time setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME:RAMP? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME:RAMP?

It queries the time required to ramp to the voltage set for test for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME[:TEST] <*numeric value*> / CONTinue [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME[:TEST] <*numeric value*> / CONTinue It sets the time required for test for the selected STEP. The unit is second. The test runs continuously when the parameter is set to CONTinue.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IR:TIME[:TEST]? [:SOURce]:SAFety:STEP<n>:SUB<s>:IR:TIME[:TEST]? It queries the time required for test for the selected STEP. The unit is second.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CHANnel[: HIGH] <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CHANnel[: HIGH] <channel\_list> It sets the status of high voltage output channel during scan test for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CHANnel[: HIGH]? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CHANnel[: HIGH]? It queries the status of high voltage output channel during scan test for the selected STEP. [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CHANnel: LOW <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CHANnel: LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CHANnel: LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CHANnel: LOW?

It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CORRection[:RESistance]:SHORt[:RAN Ge][:BEST] <*number value>*

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CORRection[:RESistance]:SHORt[:RA NGe][:BEST] <number value>

It sets the short resistance for the selected STEP. The unit is ohm and the valid range is  $0 \sim 500 \text{k}\Omega$ . This command will set the short resistance of all ranges to this value. Please be noted that the device may clear this short resistance if the test parameter is changed. It is suggested to set this short resistance after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CORRection[:RESistance]:SHORt[:RAN Ge][:BEST]?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CORRection[:RESistance]:SHORt[:RA NGe][:BEST]?

It queries the short resistance of minimum resistance range for the selected STEP. The unit is ohm.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CORRection[:RESistance]:SHORt[:RAN Ge]:ALL <range 1>,<range 2>,<range 3>,<range 4>,<range 5>,<range 6> [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CORRection[:RESistance]:SHORt[:RA NGe]:ALL <range 1>,<range 2>,<range 3>,<range 4>,<range 5>,<range 6> It sets the short resistance of each range for the selected STEP. The unit is ohm and the valid range is $0 \sim 500 k\Omega$ . This command requires 6 parameters, the first parameter is the short resistance of minimum resistance range. Please be noted that the device may clear this short resistance if the test parameter is changed. It is suggested to set this shrot resistance after all test parameters are set.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:CORRection[:RESistance]:SHORt[:RAN Ge]:ALL?

#### [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:CORRection[:RESistance]:SHORt[:RA NGe]:ALL?

It queries the short resistance of selected STEP. The unit is ohm. This query command will return 6 short resistances with comma as the separator. The first is the short resistance of minimum resistance range.

# [:SOURce:]SAFety:STEP<n>[:MAIN]:DCR:LIMit[:HIGH]<numeric value>[:SOURce:]SAFety:STEP<n>:SUB<s>:DCR:LIMit[:HIGH]<numeric value>It sets the high limit of DC resistance for the selected STEP.The unit is ohm.

#### [:SOURce:]SAFety:STEP<n>[:MAIN]:DCR:LIMit[:HIGH]? [:SOURce:]SAFety:STEP<n>:SUB<s>:DCR:LIMit[:HIGH]? It gueries the high limit of DC resistance for the selected STEP. The unit is ohm.

[:SOURce:]SAFety:STEP<n>[:MAIN]:DCR:LIMit:LOW [:SOURce:]SAFety:STEP<n>:SUB<s>:DCR:LIMit:LOW It sets the low limit of DC resistance for the selected STEP. setting of Low Limit is disabled when the parameter is OFF. (Note: State of the selected state) is obm.

## [:SOURce:]SAFety:STEP<n>[:MAIN]:DCR:LIMit:LOW? [:SOURce:]SAFety:STEP<n>:SUB<s>:DCR:LIMit:LOW?

It queries the low limit of DC resistance for the selected STEP. The unit is ohm.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe:UPPer <a href="https://www.commons.org">commeric values</a> [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe:UPPer <a href="https://www.commons.org">commeric values</a> [:SOURce]:SAFety:STEP<n>:SUB<s>:SUB</a> [:SOURce]:SAFety:STEP<n>:SUB</a>

## [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe:UPPer? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe:UPPer?

It queries the DC resistance range for test for the selected STEP. The unit is ohm.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe[:LOWer]<numeric value>[:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe[:LOWer]<numeric value>It sets the DC resistance range for test for the selected STEP.The unit is ohm.The setDC resistance range should be smaller than the input DC resistance.The unit is ohm.The set

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe[:LOWer]? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe[:LOWer]? It gueries the DC resistance range for test for the selected STEP. The unit is ohm.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe:AUTO <boolean> | ON |OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe:AUTO <boolean> | ON |OFF It sets the DC resistance range for test to auto for the selected STEP.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:RANGe:AUTO? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:RANGe:AUTO?

It queries if the DC resistance range for test is set to auto for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:TIME:DWELI <-numeric value> / OFF [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:TIME:DWELI <-numeric value> / OFF It sets the time required for DWELL for the selected STEP. The unit is second. The Dwell Time setting is disabled when the parameter is set to OFF.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:TIME:DWELI? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:TIME:DWELI?

It gueries the time required for DWELL for the selected STEP. The unit is second.

# | SOURce]:SAFety:STEP<n>[:MAIN]:DCR:TIME[:TEST] *<numeric value> | OFF: CONTinue*

## [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:TIME[:TEST] <*numeric value> | OFF |* CONTinue

It sets the time required for test for the selected STEP. The unit is second. The Test Time setting is disabled when the parameter is set to OFF. The test runs continuously when the parameter is set to CONTinue.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:DCR:TIME[:TEST]? [:SOURce]:SAFety:STEP<n>:SUB<s>:DCR:TIME[:TEST]?

It queries the time required for test for the selected STEP. The unit is second. When DCR is set to OFF, the return value is 9.91E37, and when DCR is set to CONTinue, the return value is 0.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CHANnel[:HIGH] <*channel\_list*> [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CHANnel[:HIGH] <*channel\_list*>

It sets the status of high voltage output channel during scan test for the selected STEP.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CHANnel[:HIGH]?

[:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CHANnel[:HIGH]? It queries the status of high voltage output channel during scan test for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CHANnel:LOW <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CHANnel:LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CHANnel:LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CHANnel:LOW?

It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:OPEN[:RAN Ge][:BEST] <number value>

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:OPEN[:RA NGe][:BEST] <number value>

It sets the open capacitance for the selected STEP. The unit is farad and the valid range is  $0 \sim 500$ nF. This command will set the open capacitance of all ranges to this value. Please be noted that the device may clear this open capacitance if the test parameter is changed. It is suggested to set this open capacitance after all test parameters are set.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:OPEN[:RAN Ge][:BEST]?

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:OPEN[:RA NGe][:BEST]?

It queries the open resistance of minimum capacitance range for the selected STEP. The unit is farad.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:OPEN[:RAN Ge]:ALL <range 1>,<range 2>,<range 3>

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:OPEN[:RA NGe]:ALL <range 1>,<range 2>,<range 3>

It sets the open capacitance of each range for the selected STEP. The unit is farad and the valid range is  $0 \sim 500$  nF. This command requires 3 parameters; the first parameter is the open capacitance of minimum capacitance range. Please be noted that the device may clear this open capacitance if the test parameter is changed. It is suggested to set this open capacitance after all test parameters are set.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:OPEN[:RAN Ge]:ALL?

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:OPEN[:RA NGe]:ALL?

It queries the open capacitance of selected STEP. The unit is ohm. This query command will return 3 open capacitances with comma as the separator. The first is the open capacitance of minimum capacitance range.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:SAMPle <range>,<number value>

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:SAMPle <range>,<number value>

It sets measurement range and standard capacitance for the selected STEP. This command requires 2 parameters. The first parameter is the measurement range and the valid range is 1, 2 or 3. 1 is to select the minimum capacitance range. The second parameter is to set the standard capacitance in the unit of farad. The valid standard capacitances are varied with range as the table listed below.

| Range | Minimum | Maximum |
|-------|---------|---------|
| 1     | 0.001nF | 5nF     |
| 2     | 0.01nF  | 50nF    |
| 3     | 0.1nF   | 500nF   |

## [:SOURce]:SAFety:STEP<n>[:MAIN]:OSC:CORRection[:CAPacitance]:OPEN[:RAN Ge][:BEST]?

## [:SOURce]:SAFety:STEP<n>:SUB<s>:OSC:CORRection[:CAPacitance]:OPEN[:RA NGe][:BEST]?

It queries the measurement range and standard capacitance of selected STEP. This query command will return 2 values with comma as the separator. The first value is the measurement range and the second is the standard capacitance in the unit of farad.

## [:SOURce]: SAFety: STEP<n>[:MAIN]:OSC:LIMit[:OPEN] <*numeric value*> [:SOURce]: SAFety: STEP<n>:SUB<s>:OSC:LIMit[:OPEN] <*numeric value*> It sets the percentage of Open judgment for OSC for the selected STEP.

## [:SOURce]: SAFety: STEP<n>[:MAIN]:OSC:LIMit[:OPEN]?

[:SOURce]: SAFety: STEP<n>:SUB<s>:OSC:LIMit[:OPEN]?

It queries the percentage of Open judgment for OSC for the selected STEP.

[:SOURce]: SAFety: STEP<n>[:MAIN]:OSC:LIMit:SHORt <numeric value> | OFF [:SOURce]: SAFety: STEP<n>:SUB<s>:OSC:LIMit:SHORt <numeric value> | OFF It sets the percentage of Short judgment for OSC for the selected STEP. The SHORt setting is disabled when the parameter is set to OFF.

## [:SOURce]: SAFety: STEP<n>[:MAIN]:OSC:LIMit:SHORt?

## [:SOURce]: SAFety: STEP<n>:SUB<s>:OSC:LIMit:SHORt?

It queries the percentage of Short judgment for OSC for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IWT:NAME <string data> [:SOURce]:SAFety:STEP<n>:SUB<s>:IWT:NAME <string data>

It sets the filename saved in the memory of ECG DWX-05/10 for the selected STEP. See ECG DWX-05/10 manual for its format.

## [SOURce]:SAFety:STEP<n>[:MAIN]:IWT:NAME? [SOURce]:SAFety:STEP<n>:SUB<s>:IWT:NAME?

It queries the filename from the ECG DWX-05/10 memory for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IWT:CHANnel[:HIGH] <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:IWT:CHANnel[:HIGH] <channel\_list> It sets the status of high voltage output channel during scan test for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IWT:CHANnel[:HIGH]? [:SOURce]:SAFety:STEP<n>:SUB<s>:IWT:CHANnel[:HIGH]? It queries the status of high voltage output channel during scan test for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:IWT:CHANnel:LOW <channel\_list> [:SOURce]:SAFety:STEP<n>:SUB<s>:IWT:CHANnel:LOW <channel\_list> It sets the output status of common test channel (RTN/LOW) during scan for the selected STEP.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:IWT:CHANnel:LOW? [:SOURce]:SAFety:STEP<n>:SUB<s>:IWT:CHANnel:LOW? It queries the output status of common test channel (RTN/LOW) during scan for the selected STEP.

[:SOURce]:SAFety:STEP<n>[:MAIN]:PA[:MESSage] <*string*> [:SOURce]:SAFety:STEP<n>:SUB<s>:PA[:MESSage] <*string*> It sets the message string of PA MODE.

## [:SOURce]:SAFety:STEP<n>[:MAIN]:PA[:MESSage]? [:SOURce]:SAFety:STEP<n>:SUB<s>:PA[:MESSage]? It queries the message string of PA MODE.

[:SOURce]:SAFety:STEP<n>[:MAIN]:PA:TIME[:TEST]

[:SOURce]:SAFety:STEP<n>:SUB<s>:PA:TIME[:TEST]

<numeric value> | CONTinue <numeric value> | CONTinue

It sets the execution time of PA MODE. The unit is second. The test runs continuously when the parameter is set to CONTinue.

#### [:SOURce]:SAFety:STEP<n>[:MAIN]:PA:TIME[:TEST]? [:SOURce]:SAFety:STEP<n>:SUB<s>:PA:TIME[:TEST]? It gueries the execution time of PA MODE. The unit is second.

## 8.6 Error Messages

- The error messages stored in error queue will be returned in the way of first in first out (FIFO) which means the first error message returned is the first one being saved.
- When error messages exceed 10, the last one be stored in the error queue will be –350 "Queue overflow". It means the error queue is unable to store another error message until the error messages are extracted.
- If no error is generated, +0 "No error" will be stored in the first position of error queue.

- -101 Invalid character
- -102 Syntax error
- -103 Invalid separator
- -104 Data type error
- -108 Parameter not allowed
- -109 Missing parameter
- -111 Header separator error
- -112 Program mnemonic too long
- -113 Undefined header
- -114 Header suffix out of range
- -120 Numeric data error
- -141 Invalid character data
- -151 Invalid string data
- -158 String data not allowed
- -168 Block data not allowed
- -171 Invalid expression error
- -178 Expression data not allowed
- -200 Execution error
- -203 Command protected
- -221 Settings conflict
- -222 Data out of range
- -292 Referenced name does not exist
- -293 Referenced name already exist
- -350 Queue overflow
- -363 Input buffer overrun
- -410 Query INTERRUPTED
- -420 Query UNTERMINATED

# 9. Calibration Procedure

Before performing the calibration procedure listed in this chapter, the Scanner should be warmed up for at least 30 minutes. Remove the top cover and press down the calibration switch (SW102) on the KEY BOARD inside the front panel. This switch has hardware protection circuit to prevent the calibration data from loss.

Following are the items must be calibrated:

## Voltage Calibration (see Section 9.2)

- ACV 5kV Offset (0.050kV) ACV 5kV Full (4kV) OSCV 100V Offset (50V) OSCV 100V Full (100V) DCV 6kV Offset (0.050kV) DCV 6kV Full (4kV)
- ; AC Voltage FULL point ; OSC Voltage OFFSET point ; OSC Voltage FULL point

; AC Voltage OFFSET point

- ; DC Voltage OFFSET point
- ; DC Voltage FULL point

## **Current Calibration (see Section 9.3)**

- ACA 3mA Offset (0.12mA) RACA 3mA Offset (0.12mA) ACA 3mA Full (2.4mA) RACA 3mA Full (2.4mA) ACA 30mA Offset (2.4mA) RACA 30mA Offset (2.4mA) ACA 30mA Full (12mA) RACA 30mA Full (12mA) DCA 3mA Offset (0.12mA) DCA 3mA Full (2.4mA) DCA 10mA Offset (2.4mA) DCA 10mA Full (4.8mA)
- ; AC total current 2.999mA range OFFSET point
  ; AC real current 2.999mA range OFFSET point
  ; AC total current 2.999mA range FULL point
  ; AC real current 2.999mA range FULL point
  ; AC total current 30mA range OFFSET point
  ; AC real current 30mA range OFFSET point
  ; AC total current 30mA range FULL point
  ; AC total current 30mA range FULL point
  ; AC real current 30mA range FULL point
  ; AC real current 30mA range FULL point
  ; AC real current 30mA range FULL point
  ; DC 2.999mA range OFFSET point
- ; DC 2.999mA range FULL point
- ; DC 10mA range OFFSET point
- ; DC 10mA range FULL point

## **Insulation Resistance Calibration (see Section 9.4)**

- IRR GET OFFSET IRR 200M $\Omega$  OFFSET (4M $\Omega$ ) IRR 200M $\Omega$  FULL (20M $\Omega$ ) IRR 2G $\Omega$  OFFSET (40M $\Omega$ ) IRR 2G $\Omega$  FULL (200M $\Omega$ ) IRR 20G $\Omega$  OFFSET (400M $\Omega$ ) IRR 20G $\Omega$  FULL (2G $\Omega$ ) IRR 200G $\Omega$  OFFSET (4G $\Omega$ ) IRR 200G $\Omega$  FULL (20G $\Omega$ ) IRR 550G $\Omega$  OFFSET (40G $\Omega$ ) IRR 550G $\Omega$  FULL (200G $\Omega$ )
- ; IR Resistor Offset Calibration
- ; IR Resistor 200M $\Omega$  OFFSET point
- ; IR Resistor 200M $\Omega$  FULL point
- ; IR Resistor  $2G\Omega$  OFFSET point
- ; IR Resistor  $2G\Omega$  FULL point
- ; IR Resistor 20G $\Omega$  OFFSET point
- ; IR Resistor 20GΩ FULL point
- ; IR Resistor 200G $\Omega$  OFFSET point
- ; IR Resistor 200GΩ FULL point
- ; IR Resistor 550G $\Omega$  OFFSET point
- ; IR Resistor 550G $\Omega$  FULL point

## DC Resistance Calibration (see Section 9.5.1)

## DC Resistance Calibration (DCR 2/4 Terminals Model <19035-L>, see Section 9.5.1)

DCR GET SHORT DCR 1 $\Omega$  OFFSET (100m $\Omega$ ) ; DCR Resistor Short Calibration

; DCR Resistor 1 $\Omega$  OFFSET point

| DCR 1 $\Omega$ FULL (900m $\Omega$ )                                                                                                                                  | ; DCR Resistor 1Ω FULL point                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCR 10 $\Omega$ OFFSET (0.9 $\Omega$ )                                                                                                                                | ; DCR Resistor $10\Omega$ OFFSET point                                                                                                                                                                                                                                                                |
| DCR 10 $\Omega$ FULL (9 $\Omega$ )                                                                                                                                    | ; DCR Resistor $10\Omega$ FULL point                                                                                                                                                                                                                                                                  |
| DCR 100Ω OFFSET (9Ω)                                                                                                                                                  | ; DCR Resistor 100Ω OFFSET point                                                                                                                                                                                                                                                                      |
| DCR 100Ω FULL (90Ω)                                                                                                                                                   | ; DCR Resistor 100Ω FULL point                                                                                                                                                                                                                                                                        |
| DCR 1k $\Omega$ OFFSET (0.09k $\Omega$ )                                                                                                                              | ; DCR Resistor 1kΩ OFFSET point                                                                                                                                                                                                                                                                       |
| DCR 1k $\Omega$ FULL (0.9k $\Omega$ )                                                                                                                                 | ; DCR Resistor 1kΩ FULL point                                                                                                                                                                                                                                                                         |
| DCR 10kΩ OFFSET (0.9kΩ)                                                                                                                                               | ; DCR Resistor 10kΩ OFFSET point                                                                                                                                                                                                                                                                      |
| DCR 10kΩ FULL (9kΩ)                                                                                                                                                   | ; DCR Resistor 10kΩ FULL point                                                                                                                                                                                                                                                                        |
| DCR 100kΩ OFFSET (9kΩ)                                                                                                                                                | ; DCR Resistor 100kΩ OFFSET point                                                                                                                                                                                                                                                                     |
| DCR 100kΩ FULL (90kΩ)                                                                                                                                                 | ; DCR Resistor 100kΩ FULL point                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                       | nal Model <19035-ML>, see Section 9.5.2)                                                                                                                                                                                                                                                              |
| DCR GET SHORT                                                                                                                                                         | ; DCR Resistor Short Calibration                                                                                                                                                                                                                                                                      |
| DCR 1 $\Omega$ OFFSET (100m $\Omega$ )                                                                                                                                | ; DCR Resistor 1Ω OFFSET point                                                                                                                                                                                                                                                                        |
| DCR 1 $\Omega$ FULL (900m $\Omega$ )                                                                                                                                  | ; DCR Resistor 1Ω FULL point                                                                                                                                                                                                                                                                          |
| DCR 10 $\Omega$ OFFSET (0.9 $\Omega$ )                                                                                                                                |                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                       | ; DCR Resistor 10Ω OFFSET point                                                                                                                                                                                                                                                                       |
| DCR 10 $\Omega$ GFFSET (0.9 $\Omega$ )<br>DCR 10 $\Omega$ FULL (9 $\Omega$ )                                                                                          | ; DCR Resistor 10Ω OFFSET point<br>; DCR Resistor 10Ω FULL point                                                                                                                                                                                                                                      |
|                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                     |
| DCR 10 $\Omega$ FULL (9 $\Omega$ )                                                                                                                                    | ; DCR Resistor $10\Omega$ FULL point                                                                                                                                                                                                                                                                  |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)                                                                                                                             | ; DCR Resistor $10\Omega$ FULL point ; DCR Resistor $100\Omega$ OFFSET point                                                                                                                                                                                                                          |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)<br>DCR 100Ω FULL (90Ω)                                                                                                      | ; DCR Resistor 10Ω FULL point<br>; DCR Resistor 100Ω OFFSET point<br>; DCR Resistor 100Ω FULL point                                                                                                                                                                                                   |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)<br>DCR 100Ω FULL (90Ω)<br>DCR 1kΩ OFFSET (0.09kΩ)                                                                           | ; DCR Resistor 10Ω FULL point<br>; DCR Resistor 100Ω OFFSET point<br>; DCR Resistor 100Ω FULL point<br>; DCR Resistor 1kΩ OFFSET point                                                                                                                                                                |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)<br>DCR 100Ω FULL (90Ω)<br>DCR 1kΩ OFFSET (0.09kΩ)<br>DCR 1kΩ FULL (0.9kΩ)                                                   | <ul> <li>DCR Resistor 10Ω FULL point</li> <li>DCR Resistor 100Ω OFFSET point</li> <li>DCR Resistor 100Ω FULL point</li> <li>DCR Resistor 1kΩ OFFSET point</li> <li>DCR Resistor 1kΩ FULL point</li> </ul>                                                                                             |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)<br>DCR 100Ω FULL (90Ω)<br>DCR 1kΩ OFFSET (0.09kΩ)<br>DCR 1kΩ FULL (0.9kΩ)<br>DCR 10kΩ OFFSET (0.9kΩ)                        | <ul> <li>DCR Resistor 10Ω FULL point</li> <li>DCR Resistor 100Ω OFFSET point</li> <li>DCR Resistor 100Ω FULL point</li> <li>DCR Resistor 1kΩ OFFSET point</li> <li>DCR Resistor 1kΩ FULL point</li> <li>DCR Resistor 10kΩ OFFSET point</li> </ul>                                                     |
| DCR 10Ω FULL (9Ω)<br>DCR 100Ω OFFSET (9Ω)<br>DCR 100Ω FULL (90Ω)<br>DCR 1kΩ OFFSET (0.09kΩ)<br>DCR 1kΩ FULL (0.9kΩ)<br>DCR 10kΩ OFFSET (0.9kΩ)<br>DCR 10kΩ FULL (9kΩ) | <ul> <li>; DCR Resistor 10Ω FULL point</li> <li>; DCR Resistor 100Ω OFFSET point</li> <li>; DCR Resistor 100Ω FULL point</li> <li>; DCR Resistor 1kΩ OFFSET point</li> <li>; DCR Resistor 1kΩ FULL point</li> <li>; DCR Resistor 10kΩ OFFSET point</li> <li>; DCR Resistor 10kΩ FULL point</li> </ul> |

## ARC Calibration (see Section 9.6)

AC ARC 15mA (7mA) DC ARC 10mA (5mA) ; AC ARCing Calibration

; DC ARCing Calibration

## 9.1 Entering the Calibration Screen

PressSYSTEMSelectCALIBRATIONPressENTERDisplayENTER CAL. PASSWORD:PressFunction Key [A] [A] [B] ENTER to enter into a calibration mode.

## 9.2 Voltage Calibration

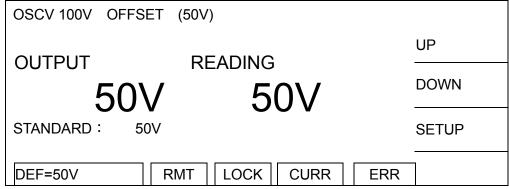
## 9.2.1 Calibrating ACV

■ Connect an ACV high voltage meter to the Scanner with high voltage terminal connected to CH1 (DRIVE) and low voltage terminal connected to RETURN/LOW.

| ACV | 5kV | OFFSET | (0.05kV) | ) Calibration | Screen:  |
|-----|-----|--------|----------|---------------|----------|
|     |     | 001    |          | , oansiadon   | 00100111 |

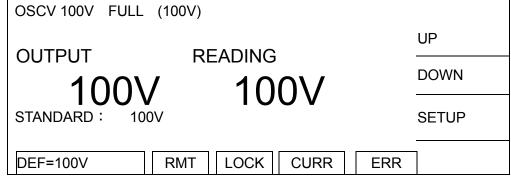
| ACV 5kV OFFSET (0.05kV) |                  |       |  |
|-------------------------|------------------|-------|--|
| OUTPUT                  | READING          | UP    |  |
| 0.050kV                 |                  | DOWN  |  |
| STANDARD : 0.050kV      | 0.030KV          | SETUP |  |
| DEF=0.05kV RM           | IT LOCK CURR ERR |       |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to ACV 5kV FULL (4kV) calibration.


## ACV 5kV FULL (4kV) Calibration Screen:

| ACV 5kV FULL (4kV) |                 |       |
|--------------------|-----------------|-------|
| OUTPUT             | READING         | UP    |
|                    | 4.000kV         | DOWN  |
| STANDARD : 4.000kV | 4.00000         | SETUP |
| DEF=4kV RM         | T LOCK CURR ERR | ]     |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to OSCV 100V OFFSET (50V) calibration.


## 9.2.2 Calibrating OSCV

## OSCV 100V OFFSET (50V) Calibration Screen:



- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to OSCV 100V FULL (100V) calibration.

## OSCV 100V FULL (100V) Calibration Screen:



- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCV 6kV OFFSET (0.05kV) calibration.

## 9.2.3 Calibrating DCV

■ Connect a DCV high voltage meter to this Scanner with high voltage terminal connected to CH1(DRIVE) and low voltage terminal connected to RETURN/LOW.

DCV 6kV OFFSET (0.05kV) Calibration Screen:

| DCV 5kV OFFSET (0.05kV) |                  |       |  |
|-------------------------|------------------|-------|--|
| OUTPUT                  | READING          | UP    |  |
| 0.050kV                 |                  | DOWN  |  |
| STANDARD : 0.050kV      | 01000111         | SETUP |  |
| DEF=0.05kV RM           | IT LOCK CURR ERR |       |  |

- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCV 6kV FULL (4kV) calibration.

## DCV 6kV FULL (4kV) Calibration Screen:

| DCV 6kV FULL (4kV)                |       |
|-----------------------------------|-------|
|                                   | UP    |
| OUTPUT READING<br>4.000kV 4.000kV | DOWN  |
| STANDARD : 4.000kV                | SETUP |
| DEF=4kV RMT LOCK CURR             | ERR   |

- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the high voltage meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from high voltage meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to ACA 3mA OFFSET (0.12mA) calibration.

## 9.3 Current Calibration

Caution! The virtual load has to be in between high potential terminal and ammeter input terminal, or it may cause hazard.

## 9.3.1 Calibrating ACA Current

Connect a 10MΩ 0.5 Watt or high power simulated load resistance in between the high voltage output terminal (CH1<DRIVE>) of this Scanner and the high potential terminal of AC meter, also connect the low potential terminal (RETURN/LOW) of this Scanner to the low potential terminal of AC meter.

| ACA 3 | BmA OFFSET (0.12m | A) Calibration Screen: |       |
|-------|-------------------|------------------------|-------|
|       | ACA 3mA OFFSET    | (0.12mA)               |       |
|       | OUTPUT            | READING                | UP    |
|       |                   |                        | DOWN  |
|       | 1.200k\           | / 0.120mA              |       |
|       | STANDARD : 0.120  |                        | SETUP |
|       | LOAD=10MΩ         | RMT LOCK CURR ERR      | ]     |

- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to RACA 3mA OFFSET (0.12mA) calibration.

## RACA 3mA OFFSET (0.12mA) Calibration Screen:

| RACA 3mA OFFSET (0.12mA) |                   |       |  |
|--------------------------|-------------------|-------|--|
| OUTPUT                   | READING           | UP    |  |
|                          |                   | DOWN  |  |
| ∣1.200kV                 | / 0.120mA         |       |  |
| STANDARD:0.120m          | Α                 | SETUP |  |
|                          |                   |       |  |
| LOAD=10MΩ                | RMT LOCK CURR ERR |       |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to ACA 3mA FULL (2.4mA) calibration.

Change the simulated load resistance to 500kΩ 10watt or higher power.

| ACA 3 | mA FULL (2.4mA) Ca |                         | 1     |
|-------|--------------------|-------------------------|-------|
|       | ACA 3mA OFFSET     | (2.4mA)                 |       |
|       | OUTPUT             | READING                 | UP    |
|       |                    | / 2.400mA               | DOWN  |
|       |                    | / 2.400MA               |       |
|       | STANDARD: 2.400r   | nA                      | SETUP |
|       |                    |                         |       |
|       | LOAD=500kΩ         | RMT   LOCK   CURR   ERR |       |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to RACA 3mA FULL (2.4mA) calibration.

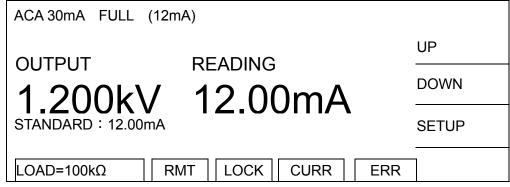
## RACA 3mA FULL (2.4mA) Calibration Screen:

| RACA 3mA FULL (2.4mA) |                   |       |  |
|-----------------------|-------------------|-------|--|
|                       |                   | UP    |  |
| OUTPUT                | READING           | DOWN  |  |
| ∣1.200kV              | 2.400mA           |       |  |
| STANDARD : 2.400m     |                   | SETUP |  |
| LOAD=500kΩ            | RMT LOCK CURR ERR |       |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to ACA 30mA OFFSET (2.4mA) calibration.

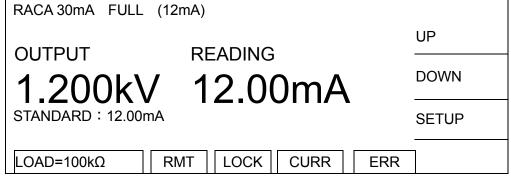
| ACA 30mA OFFSET (2.4mA)  |                   |       |  |
|--------------------------|-------------------|-------|--|
|                          |                   | UP    |  |
| оитрит<br><b>1.200kV</b> | reading<br>2.40mA | DOWN  |  |
| STANDARD : 2.40mA        |                   | SETUP |  |
| LOAD=500kΩ RM            | IT LOCK CURR ERR  | ]     |  |

- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to RACA 30mA OFFSET (2.4mA) calibration.


## RACA 30mA OFFSET (2.4mA) Calibration Screen:

| RACA 30mA OFFSI  | ET (2.4mA)        |       |
|------------------|-------------------|-------|
| OUTPUT           | READING           | UP    |
| 1.200k           | _                 | DOWN  |
| STANDARD : 2.40m |                   | SETUP |
| LOAD=500kΩ       | RMT LOCK CURR ERR |       |

- 1. Press Function Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to ACA 30mA FULL (12mA) calibration.


Change the simulated load resistance to 100kΩ 50watt or higher power.

ACA 30mA FULL (12mA) Calibration Screen:



- 1. Press <u>Function</u> Key [SETUP] to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to RACA 30mA FULL (12mA) calibration.

## RACA 30mA FULL (12mA) Calibration Screen:



- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the AC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from AC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCA 3mA OFFSET (0.12mA) calibration.

## 9.3.2 Calibrating DCA Current

Connect a 10MΩ 0.5 Watt or high power simulated load resistance in between the high voltage output terminal (CH1<DRIVE>) of this Scanner and the high potential terminal of DC meter, also connect the low potential terminal (RETURN/LOW) of this Scanner to the low potential terminal of DC meter.

## DCA 3mA OFFSET (0.12mA) Calibration Screen:

| DCA 3mA OFFSET (0.12mA) |                   |   |  |  |
|-------------------------|-------------------|---|--|--|
| OUTPUT                  | UP                |   |  |  |
| 1.200k\                 | DOWN              |   |  |  |
| STANDARD : 0.120n       | SETUP             |   |  |  |
| LOAD=10MΩ               | RMT LOCK CURR ERR | ] |  |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the DC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from DC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCA 3mA FULL (2.4mA) calibration.
- Change the simulated load resistance to 500kΩ 10watt or higher power.

## DCA 3mA FULL (2.4mA) Calibration Screen:

| DCA 3mA FULL (2.4mA) |                   |    |  |  |
|----------------------|-------------------|----|--|--|
|                      |                   | UP |  |  |
| OUTPUT               | READING           |    |  |  |
| 1 200121             | DOWN              |    |  |  |
| I.ZUUKV              | 2.400mA           |    |  |  |
| STANDARD : 2.400mA   | SETUP             |    |  |  |
| LOAD=500kΩ           | RMT LOCK CURR ERR |    |  |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the DC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from DC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCA 10mA OFFSET (2.4mA) calibration.

## DCA 10mA OFFSET (2.4mA) Calibration Screen:

| DCA 10mA OFFSET   | (2.4mA)           |       |
|-------------------|-------------------|-------|
| OUTPUT            | READING           | UP    |
| 1.200kV           |                   | DOWN  |
| STANDARD : 2.40m/ |                   | SETUP |
| LOAD=500kΩ        | RMT LOCK CURR ERR |       |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the DC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from DC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to DCA 10mA FULL (4.8mA) calibration.

## **Change the simulated load resistance to 250kΩ 20watt or higher power.**

## DCA 10mA FULL (4.8mA) Calibration Screen:

| DCA 10mA OFFSET (4.8mA) |                   |       |  |  |
|-------------------------|-------------------|-------|--|--|
| OUTPUT                  | READING           | UP    |  |  |
| 1.200k                  |                   | DOWN  |  |  |
| STANDARD : 4.80r        |                   | SETUP |  |  |
| LOAD=250kΩ              | RMT LOCK CURR ERR |       |  |  |

- 1. Press <u>Function Key [SETUP]</u> to change the output voltage.
- 2. Press **START** to output voltage and read data from the DC meter.
- 3. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the reading from DC meter.
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press Function Key [DOWN] to go to IRR GET OFFSET calibration.

## 9.4 Insulation Resistance (IR) Calibration

Do not connect the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) to any DUT or wires for the following calibration procedure.

## **IRR GET OFFET Calibration Screen:**

| IRR | GET | OFFSET |     |     |      |     |      |
|-----|-----|--------|-----|-----|------|-----|------|
| 50  | •   |        |     | •   |      |     | UP   |
| R3= | 0   |        | R6= | 0   |      |     |      |
| R4= | 0   |        | R7= | 0   |      |     | DOWN |
| R5= | 0   |        |     |     |      |     |      |
|     |     |        |     |     |      |     |      |
|     |     |        |     |     |      |     |      |
|     |     | F      | RMT | OCK | CURR | ERR |      |

- 1. Press **START** to begin IR GET OFFET.
- 2. When the status line at the lower left corner shows [COMPLETED], it indicates the OFFSET calibration is done.
- 3. Press Function Key [DOWN] to go to IRR 200MΩ OFFSET (4MΩ) calibration.
- Connect a 4MΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

## IRR 200MΩ OFFSET (4MΩ) Calibration Screen:

| IRR 200MΩ OFFSE          | ΕΤ (4ΜΩ)                |            |
|--------------------------|-------------------------|------------|
| OUTPUT<br><b>1.000k\</b> |                         | UP<br>DOWN |
| STANDARD : 4.0N          |                         |            |
| LOAD=4MΩ                 | RMT   LOCK   CURR   ERR |            |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 200M $\Omega$  FULL (20M $\Omega$ ) calibration.

Connect a 20MΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

 IRR 200MΩ FULL (20MΩ) Calibration Screen:
 UP

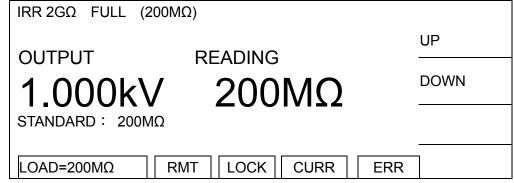
 IRR 200MΩ FULL (20MΩ)
 UP

 OUTPUT
 READING

 1.000kV
 20.0MΩ

 STANDARD : 20.0MΩ
 RMT

 LOAD=20MΩ
 RMT


- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR  $2G\Omega$  OFFSET ( $40M\Omega$ ) calibration.
- Connect a 40MΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

## IRR 2GΩ OFFSET (40MΩ) Calibration Screen:

| IRR 2GΩ OFFSET (4        | 0ΜΩ)             |      |
|--------------------------|------------------|------|
| OUTPUT                   | READING          | UP   |
|                          |                  | DOWN |
| 1.000kV                  | 40.0MΩ           |      |
| STANDARD : $40.0M\Omega$ |                  |      |
| LOAD=40MΩ RN             | IT LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR  $2G\Omega$  FULL (200M $\Omega$ ) calibration.

- Connect a 200MΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.
- IRR <u>2GΩ FULL (200MΩ) Calibration Screen:</u>



- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 20GΩ OFFSET (400MΩ) calibration.
- Connect a 400MΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

## IRR 20GΩ OFFSET (400MΩ) Calibration Screen:

| IRR 20GΩ OFFSET                     | (400ΜΩ)           |      |
|-------------------------------------|-------------------|------|
| OUTPUT                              | READING           | UP   |
| 1.000kV                             | 400MΩ             | DOWN |
| <b>Γ.ΟΟΟΚ V</b><br>STANDARD : 400MΩ |                   |      |
| LOAD=400MΩ F                        | RMT LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR  $20G\Omega$  FULL ( $2G\Omega$ ) calibration.

Connect a 2GΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

 IRR 20GΩ FULL (2GΩ) Calibration Screen:

 IRR 20GΩ FULL (2GΩ)

 OUTPUT
 READING

 1.000kV
 2.00GΩ

 STANDARD : 2.00GΩ

 IOAD=2GΩ

 RMT
 LOCK

 CURR

 ERR

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 200GΩ OFFSET (4GΩ) calibration.
- Connect a 4GΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

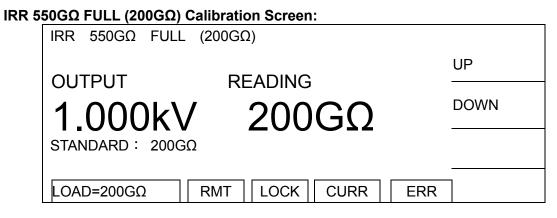
## IRR 200GΩ OFFSET (4GΩ) Calibration Screen:

| IRR 200GΩ OFFSET         | (4GΩ)            |      |
|--------------------------|------------------|------|
| OUTPUT                   | READING          | UP   |
|                          |                  | DOWN |
| 1.000kV                  | 4.00GΩ           |      |
| STANDARD : $4.00G\Omega$ |                  |      |
| LOAD=4GΩ R               | MT LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 200G $\Omega$  FULL (20G $\Omega$ ) calibration.

Connect a 20GΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

# IRR 200GΩ FULL (20GΩ) Calibration Screen: IRR 200GΩ FULL (20GΩ): OUTPUT READING 1.000kV 20.0GΩ STANDARD : 20.0GΩ RMT LOCK CURR ERR


- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 550G $\Omega$  OFFSET (40G $\Omega$ ) calibration.
- Connect a 40GΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.

## IRR 550GΩ OFFSET (40GΩ) Calibration Screen:

| IRR 550GΩ OFFSET  | (40GΩ)           |      |
|-------------------|------------------|------|
|                   |                  | UP   |
| OUTPUT            | READING          | DOWN |
| 1.000kV           | 40.0GΩ           |      |
| STANDARD : 40.0GΩ |                  |      |
| LOAD=40GΩ R       | MT LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to IRR 550G $\Omega$  FULL (200G $\Omega$ ) calibration.

Connect a 200GΩ standard resistance in between the high voltage output terminal (CH1<DRIVE>) and low potential terminal (RETURN/LOW) of the Scanner.



- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop high voltage output.
- 5. Press Function Key [DOWN] to go to DCR GET SHORT calibration.

## 9.5 DC Resistance Calibration

- (1) Calibration for DCR 2/4-terminal test model 19035-L, see Section 9.5.1.
- (2) Calibration for DCR 4-terminal test mode 19035-ML, see Section 9.5.2.

# 9.5.1 DC Resistance Calibration (19035-L DCR

## 2/4-Terminal)

■ Use test wire to short circuit the output terminal (CH1), CH2, CH3 and CH4 for the following calibration procedures.

## **DCR GET SHORT Calibration Screen:**

| DCR GET SHORT | Г             |      |
|---------------|---------------|------|
| 2-R1= 0.0 mΩ  | 4-R1= 0.0 mΩ  | UP   |
| 2-R2= 0.000 Ω | 4-R2= 0.000Ω  |      |
| 2-R3= 0.00 Ω  | 4-R3= 0.00Ω   | DOWN |
| 2-R4= 0.0 Ω   | 4-R4= 0.0Ω    |      |
| 2-R5= 0.000kΩ | 4-R5= 0.000kΩ |      |
| 2-R6= 0.00kΩ  | 4-R6= 0.00kΩ  |      |
| LOAD=0Ω       | RMT LOCK CURR | ERR  |

- 1. Press **START** to perform DCR GET SHORT.
- 2. When the status line at the lower left corner shows [COMPLETED] it indicates the OFFSET calibration is done.
- 3. Press Function Key [DOWN] to go to DCR 1 $\Omega$  OFFSET (100m $\Omega$ ) calibration.
- Connect the high voltage output terminal CH1, CH2 to one end of the standard 100mΩ resistance and CH3, CH4 to the other end.

## DCR 1Ω OFFSET (100mΩ) Calibration Screen:

| DCR 1Ω OFFSET (100) | mΩ)           |      |
|---------------------|---------------|------|
|                     |               | UP   |
| 2-TERMINAL          | 4-TERMINAL    | DOWN |
| 95.4 mΩ             | 96.8 mΩ       | DOWN |
| STANDARD : 100.0mΩ  |               |      |
|                     |               |      |
| LOAD=100mΩ RMT      | LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 1 $\Omega$  FULL (900m $\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 900mΩ resistance and CH3, CH4 to the other end.

DCR 1Ω FULL (900mΩ) Calibration Screen:

| DCR 1 $\Omega$ FULL (900m $\Omega$ ) |               |      |
|--------------------------------------|---------------|------|
|                                      |               | UP   |
| 2-TERMINAL                           | 4-TERMINAL    | DOWN |
| 895.4 mΩ<br>STANDARD : 900.0mΩ       | 896.8 mΩ      |      |
| STANDARD - 900.01112                 |               |      |
| LOAD=900mΩ RMT                       | LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10\Omega$  OFFSET ( $0.9\Omega$ ) calibration.

## DCR <u>10Ω OFFSET (0.9Ω)</u> Calibration Screen:

| DCR $10\Omega$ OFFSET                | (0.9Ω)         |      |
|--------------------------------------|----------------|------|
| 2-TERMINAL                           | 4-TERMINAL     | UP   |
| $0.888 \Omega$                       | $0.886 \Omega$ | DOWN |
| <b>U.OOO 12</b><br>STANDARD : 0.900Ω | 0.000 12       |      |
|                                      |                |      |
| LOAD=0.9Ω                            | RMT LOCK CURR  | ERR  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 10 $\Omega$  FULL (9 $\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 9Ω resistance and CH3, CH4 to the other end.

```
DCR 10Ω FULL (9Ω) Calibration Screen:
```

| DCR 10Ω FULL (             | (9Ω)     |            |              |      |
|----------------------------|----------|------------|--------------|------|
| 2-TERMINAL                 |          | 4-TERMINAL |              | UP   |
|                            | $\frown$ |            | $\mathbf{O}$ | DOWN |
| 8.881<br>STANDARD : 9.0000 |          | 8.877      | ()           |      |
|                            | .2       |            |              |      |
| LOAD=9Ω                    | RMT      | LOCK CURR  | ERR          |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100 $\Omega$  OFFSET (9 $\Omega$ ) calibration.

## DCR 100Ω OFFSET (9Ω) Calibration Screen:

| DCR 100Ω OFFS    | SET (9Ω | 2)         |     |      |  |  |
|------------------|---------|------------|-----|------|--|--|
|                  |         |            |     | UP   |  |  |
| 2-TERMINAL       | _       | 4-TERMINAL | _   |      |  |  |
| 8.86             | Ω       | 8.85       | Ω   | DOWN |  |  |
| STANDARD : 9.00Ω |         |            |     |      |  |  |
| LOAD=9Ω          | RMT     | LOCKCURR   | ERR |      |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100 $\Omega$  FULL (90 $\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 90Ω resistance and CH3, CH4 to the other end.

DCR 100 $\Omega$  FULL (90 $\Omega$ ) Calibration Screen:

| DCR $100\Omega$ FULL       | (90Ω)  |            |              |      |
|----------------------------|--------|------------|--------------|------|
| 2-TERMINAL                 |        | 4-TERMINAL |              | UP   |
|                            | $\cap$ | 88.70      | $\mathbf{O}$ | DOWN |
| OO./ I<br>STANDARD : 90.00 |        | 00.70      | 12           |      |
|                            |        |            |              |      |
| LOAD=90Ω                   | RMT    | LOCK CURR  | ERR          |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $1k\Omega$  OFFSET (90 $\Omega$ ) calibration.

## DCR 1kΩ OFFSET (90Ω) Calibration Screen:

| DCR 1kΩ OFFS   | ΕΤ (90Ω)        |            |     |      |  |  |
|----------------|-----------------|------------|-----|------|--|--|
|                |                 |            |     | UP   |  |  |
| 2-TERMINAL     |                 | 4-TERMINAL |     |      |  |  |
| 88.6           | 0               | 88.5       | 0   | DOWN |  |  |
| 0.00           | 52              | 00.0       | 77  |      |  |  |
| STANDARD: 90.0 | STANDARD: 90.0Ω |            |     |      |  |  |
|                |                 |            |     |      |  |  |
| LOAD=90Ω       | RMT             | LOCKCURR   | ERR |      |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $1k\Omega$  FULL (900 $\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 900Ω resistance and CH3, CH4 to the other end.

| DCR 1kΩ F | ULL (900Ω) | Calibration Screen: |
|-----------|------------|---------------------|
|-----------|------------|---------------------|

| DCR 1kΩ FULL              | (900Ω)       |            |              |      |
|---------------------------|--------------|------------|--------------|------|
|                           |              |            |              | UP   |
| 2-TERMINAL                | $\mathbf{O}$ | 4-TERMINAL | $\mathbf{O}$ | DOWN |
| 892.1<br>STANDARD : 900.0 |              | 892.0      | ()           |      |
|                           | 32           |            |              |      |
| LOAD=900Ω                 | RMT          | LOCK CURR  | ERR          |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10k\Omega$  OFFSET (0.9k $\Omega$ ) calibration.

## DCR <u>10kΩ OFFSET (0.9kΩ) Calibration Screen:</u>

| DCR 10k $\Omega$ OFFSET (0.9k $\Omega$ ) |              |            |          |      |  |  |  |
|------------------------------------------|--------------|------------|----------|------|--|--|--|
|                                          |              |            |          | UP   |  |  |  |
| 2-TERMINAL                               | $\mathbf{O}$ | 4-TERMINAL | $\frown$ | DOWN |  |  |  |
| 01000                                    | $\Omega$     | 0.889      | Ω        |      |  |  |  |
| STANDARD ÷ 0.900kΩ                       |              |            |          |      |  |  |  |
| LOAD=0.9kΩ                               | RMT          | LOCK       | ERR      | ]    |  |  |  |
|                                          | 1            | 11 11 1    | 1        |      |  |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10k\Omega$  FULL ( $9k\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 9kΩ resistance and CH3, CH4 to the other end.

DCR  $10k\Omega$  FULL ( $9k\Omega$ ) Calibration Screen:

| DCR 10kΩ FULL     | (9kΩ)        |            |     |      |
|-------------------|--------------|------------|-----|------|
|                   |              |            |     | UP   |
| 2-TERMINAL        | $\mathbf{a}$ | 4-TERMINAL |     | DOWN |
|                   |              | 8.854      | kΩ  |      |
| STANDARD : 9.000k | Ω            |            |     |      |
| LOAD=9kΩ          | RMT          | LOCK CURR  | ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100k $\Omega$  OFFSET (9k $\Omega$ ) calibration.

## DCR 100kΩ OFFSET (9kΩ) Calibration Screen:

| DCR 100kΩ OFFSET  | (9kΩ)            |      |
|-------------------|------------------|------|
|                   |                  | UP   |
| 2-TERMINAL        | 4-TERMINAL       |      |
| 8.89kΩ            | 8.89kΩ           | DOWN |
| 0.09K12           | 0.09K12          |      |
| STANDARD : 9.00kΩ |                  |      |
|                   |                  |      |
| LOAD=9kΩ RM       | IT LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100k $\Omega$  FULL (90k $\Omega$ ) calibration.

Connect the high voltage output terminal CH1, CH2 to one end of the standard 90kΩ resistance and CH3, CH4 to the other end.

## DCR 100k $\Omega$ FULL (90k $\Omega$ ) Calibration Screen:

| DCR 100kΩ FULL (90kΩ) |                   |    |  |  |
|-----------------------|-------------------|----|--|--|
| 2-TERMINAL            | 4-TERMINAL        | UP |  |  |
| 88.54k                | DOWN              |    |  |  |
| STANDARD : 90.00      |                   |    |  |  |
| LOAD=90kΩ             | RMT LOCK CURR ERF | ۲  |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to AC ARC 15mA FULL (7mA) calibration.

## 9.5.2 DC Resistance Calibration (19035-ML DCR

## 4-Terminal)

Short-circuit the output terminal CH1(DRIVE), CH1(SENSE), CH4(DRIVE), CH4(SENSE) for the following calibration procedures

## **DCR GET SHORT Calibration Screen:**

| DCR GET SHORT |                 |      |
|---------------|-----------------|------|
|               |                 | UP   |
| 4-R1= 0.0mΩ   | 4-R4= 0.0 Ω     |      |
| 4-R2=0.000 Ω  | 4-R5=0.000kΩ    | DOWN |
| 4-R3= 0.00 Ω  | 4-R6= 0.00kΩ    |      |
|               |                 |      |
|               |                 |      |
| LOAD=0Ω RM    | T LOCK CURR ERR |      |

- 1. Press **START** to perform DCR GET SHORT.
- 2. When the status line at the lower left corner shows [COMPLETED], it indicates the OFFSET calibration is done.
- 3. Press Function Key [DOWN] to go to DCR 1 $\Omega$  OFFSET (100m $\Omega$ ) calibration.

 Connect one end of the 100mΩ standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 1 $\Omega$ OFFSET (100m $\Omega$ ) Calibration Screen:

| DCR 1Ω OFFSET (100) | mΩ)           |      |
|---------------------|---------------|------|
|                     | 4-TERMINAL    | UP   |
|                     | 98.0mΩ        | DOWN |
| STANDARD:100.0mΩ    |               |      |
| LOAD=100mΩ RMT      | LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 1 $\Omega$  FULL (900m $\Omega$ ) calibration.
- Connect one end of the 900mΩ standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 1Ω FULL (900mΩ) Calibration Screen:

| DCR 1Ω FULL (900mΩ | )             |      |
|--------------------|---------------|------|
|                    |               | UP   |
|                    | 4-TERMINAL    |      |
|                    | 888.0mΩ       | DOWN |
|                    | 000.01122     |      |
| STANDARD : 900.0mΩ |               |      |
|                    |               |      |
| LOAD=900mΩ RMT     | LOCK CURR ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10\Omega$  OFFSET (0.9 $\Omega$ ) calibration.

## DCR 10Ω OFFSET (0.9Ω) Calibration Screen:

| DCR 10Ω   | OFFSET   | (0.9Ω)            |      |
|-----------|----------|-------------------|------|
|           |          | 4-TERMINAL        | UP   |
|           |          | $0.888 \Omega$    | DOWN |
| STANDARD  | : 0.900Ω |                   |      |
| LOAD=0.9Ω |          | RMT LOCK CURR ERR | ]    |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10\Omega$  FULL ( $9\Omega$ ) calibration.
- Connect one end of the 9Ω standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 10Ω FULL (9Ω) Calibration Screen:

| DCR 10Ω FULL (9Ω) |            |        |      |
|-------------------|------------|--------|------|
|                   | 4-TERMINAL |        | UP   |
|                   | 8.881      | $\cap$ | DOWN |
| STANDARD : 9.000Ω | 0.001      | ()     |      |
|                   |            |        | -    |
| LOAD=9Ω RMT       | LOCK CURR  | ERR    |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100 $\Omega$  OFFSET (9 $\Omega$ ) calibration.

## DCR 100Ω OFFSET (9Ω) Calibration Screen:

| DCR  | 100Ω   | OFFSET | (9Ω)         |     |      |
|------|--------|--------|--------------|-----|------|
|      |        |        | 4-TERMINAL   |     | UP   |
|      |        |        | 8.86         | Ω   | DOWN |
| STAN | DARD : | 9.00Ω  |              |     |      |
| LOAD | )=9Ω   | R      | MT LOCK CURR | ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100 $\Omega$  FULL (90 $\Omega$ ) calibration.
- Connect one end of the 90Ω standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 100Ω FULL (90Ω) Calibration Screen:

| DCR  | 100Ω   | FULL  | (90Ω) |            |     |      |
|------|--------|-------|-------|------------|-----|------|
|      |        |       |       | 4-TERMINAL |     | UP   |
|      |        |       |       | 88.71      | 0   | DOWN |
| STAN | DARD : | 90.00 | Ω     | 00.7 1     | 77  |      |
| LOAD | )=90Ω  |       | RMT   | LOCKCURR   | ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 1K $\Omega$  OFFSET (90 $\Omega$ ) calibration.

## DCR 1kΩ OFFSET (90Ω) Calibration Screen:

| DCR  | 1kΩ  | OFFSET  | (90Ω)      |      |      |
|------|------|---------|------------|------|------|
|      |      |         | 4-TERMINAL |      | UP   |
|      |      |         | 88.6       | Ω    | DOWN |
| STAN | DARD | : 90.0Ω |            |      |      |
| LOAD | =90Ω |         |            | RERR | ]    |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $1k\Omega$  FULL (900 $\Omega$ ) calibration.
- Connect one end of the 900Ω standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 1kΩ FULL (900Ω) Calibration Screen:

| DCR $1k\Omega$ FULL (900 $\Omega$ ) |            |     |      |
|-------------------------------------|------------|-----|------|
|                                     | 4-TERMINAL |     | UP   |
|                                     | 892.1      | 0   | DOWN |
| STANDARD : 900.0 $\Omega$           | 002.1      | 77  |      |
| LOAD=900Ω RMT                       | LOCK CURR  | ERR |      |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10K\Omega \text{ OFFSET} (0.9k\Omega)$  calibration.

## DCR 10kΩ OFFSET (0.9kΩ) Calibration Screen:

| DCR 10k            | Ω OFFSET | (0.9kΩ)        |      |  |  |
|--------------------|----------|----------------|------|--|--|
|                    |          | 4-TERMINAL     | UP   |  |  |
|                    |          | $0.889k\Omega$ | DOWN |  |  |
| STANDARD : 0.900kΩ |          |                |      |  |  |
| LOAD=0.9           | kΩ       | RMT LOCK CURR  | ERR  |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR  $10k\Omega$  FULL ( $9k\Omega$ ) calibration.
- Connect one end of the 9kΩ standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 10kΩ FULL (9kΩ) Calibration Screen:

| DCR 10kΩ FULL (9kΩ) |               |      |  |  |  |
|---------------------|---------------|------|--|--|--|
|                     | 2-TERMINAL    | UP   |  |  |  |
| 8.854kΩ             |               | DOWN |  |  |  |
| STANDARD : 9.000kΩ  |               |      |  |  |  |
| LOAD=9kΩ RMT        | LOCK CURR ERR |      |  |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100K $\Omega$  OFFSET (9k $\Omega$ ) calibration.

## DCR 100kΩ OFFSET (9kΩ) Calibration Screen:

| DCR               | 100kΩ | OFFSET | (9kΩ)                  |      |  |
|-------------------|-------|--------|------------------------|------|--|
|                   |       |        |                        | UP   |  |
|                   |       |        | 2-TERMINAL             | DOWN |  |
|                   |       |        | 8.89kΩ                 |      |  |
| STANDARD ÷ 9.00kΩ |       |        |                        |      |  |
|                   |       |        |                        |      |  |
| LOAD              | )=9kΩ | RN     | IT   LOCK   CURR   ERR |      |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to DCR 100k $\Omega$  FULL (90k $\Omega$ ) calibration.
- Connect one end of the 90kΩ standard resistance to the output terminal CH1(DRIVE) and CH1(SENSE), and the other end to CH4(DRIVE) and CH4(SENSE).

## DCR 100kΩ FULL (90kΩ) Calibration Screen:

| DCR 100kΩ FULL (90kΩ) |      |  |  |  |  |
|-----------------------|------|--|--|--|--|
| 4-TERMINAL            | UP   |  |  |  |  |
| $88.54$ k $\Omega$    | DOWN |  |  |  |  |
| STANDARD : 90.00kΩ    |      |  |  |  |  |
|                       | ERR  |  |  |  |  |

- 1. Press **START** to output voltage.
- 2. Press **ENTER** and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter the actual resistance.
- 3. Press **ENTER** to confirm the input data.
- 4. Press **STOP** to stop voltage output.
- 5. Press Function Key [DOWN] to go to AC ARC 15mA FULL (7mA) calibration.

#### **ARC** Calibration 9.6

**CAUTION** 1. ARC calibration is special task as the high voltage is exposed outside the terminal. Please be careful as it may cause hazard.

For detail information, please contact Chroma or its local distributors.

#### **Calibrating AC ARC** 9.6.1

Connect one end of 500kΩ 10Watt or high power simulated load resistance to the high voltage output terminal CH1 (DRIVE) on this Scanner, and move the other end close to the low potential terminal (RETURN/LOW) without physical connection in order to create sparks.

#### AC ARC 15mA FULL (7mA) Calibration Screen:

| AC ARC 15mA FU   | LL (7mA)          |       |
|------------------|-------------------|-------|
| OUTPUT           | READING           | UP    |
|                  | -                 | DOWN  |
| 2.500k∖          | / 11.1mA          |       |
| STANDARD : 7.0mA | N                 | SETUP |
| LOAD=500kΩ       | RMT LOCK CURR ERR |       |

- Press **START** to output voltage. 1.
- When the READING shows 11.1mA, press ENTER twice and enter the standard value of 2. 7 mA.
- Press **ENTER** to confirm the input data. 3.
- Press **STOP** to stop high voltage output. 4.
- Press Function Key [DOWN] to go to DC ARC 15mA FULL (5mA) calibration. 5.

### 9.6.2 Calibrating DC ARC

```
DC ARC 15mA FULL (5mA) Calibration Screen:
```

| DC ARC 15mA FULL | (5mA)            |       |
|------------------|------------------|-------|
| OUTPUT           | READING          | UP    |
|                  | READING          |       |
| 2.500kV          | 4.3mA            | DOWN  |
| 2.JUUR V         | 4.000            |       |
| STANDARD : 5.0mA |                  | SETUP |
|                  |                  |       |
| LOAD=500kΩ R     | MT LOCK CURR ERR |       |

- 1. Press **START** to output voltage.
- 2. When the status line at the lower left corner shows [COMPLETED], it indicates the device has got the ARC data correctly.
- Press ENTER and Function Key [DIGIT UP], [DIGIT DN], [DIGIT] to enter standard value. [Note:2.5kV / 500kΩ = 5mA].
- 4. Press **ENTER** to confirm the input data.
- 5. Press **STOP** to stop high voltage output.
- 6. Press **SYSTEM** to exit calibration mode.

### 9.7 When the Calibration is Done

When the calibration is done, press the calibration switch (SW102) on the KEY BOARD in side the front panel to open the protection circuit for backing up hardware data and prevent the calibration data from loss.

### 9.8 Remote Calibration Command

### 9.8.1 Command Line

| :CAL | ibration                              |
|------|---------------------------------------|
|      | :REQuest?                             |
| ĺ    | :RELease                              |
|      | :STATe <boolean>   ON   OFF</boolean> |
|      | :VALue < <i>number value</i> >        |
|      | :SAFety                               |
|      | :STARt                                |
|      | :STOP                                 |
|      | :WVAC                                 |
|      | ARANge? MAXimum   MINimum             |
|      | :ARC <n></n>                          |
|      | :SLOPe                                |
|      | [:SOURce]                             |
|      | [:VOLTage] <number value=""></number> |

[:VOLTage]? L :BEST? :CRANge? MAXimum | MINimum :CURRent<n> :OFFSet [:SOURce] [:VOLTage] <number value> [:VOLTage]? L :BEST? L :FULL [:SOURce] [:VOLTage] <number value> [:VOLTage]? :BEST? :RCRange? MAXimum | MINimum :RCURrent<n> :OFFSet [:SOURce] [:VOLTage] <number value> [:VOLTage]? L :BEST? L :FULL [:SOURce] [:VOLTage] <number value> T [:VOLTage]? :BEST? :VRANge? MAXimum | MINimum :VOLTage<n> :OFFSet [:SOURce] [:VOLTage] <number value> [:VOLTage]? :BEST? FULL [:SOURce] [:VOLTage] <number value> L [:VOLTage]? L :BEST? :WVDC :ARANge? MAXimum | MINimum :ARC<n> :SLOPe [:SOURce] [:VOLTage] <number value> [:VOLTage]? :BEST? :CRANge? MAXimum | MINimum :CURRent<n> :OFFSet [:SOURce] [:VOLTage] <number value> [:VOLTage]? :BEST? L :FULL [:SOURce] [:VOLTage] <number value> Т [:VOLTage]?

|           | :BEST?         :VRANge? MAXimum   MINimum <td:voltage<n>         :OFFSet                 :SOURce]                 [:VOLTage] &lt; number value&gt;                 [:VOLTage]?                 [:VOLTage]?         :BEST?       :FULL                 [:SOURce]                 [:VOLTage] &lt; number value&gt;                 [:VOLTage]                 [:VOLTage] &lt; number value&gt;                 [:VOLTage]                 [:VOLTage]?                 [:VOLTage]?                 [:VOLTage]?                 [:VOLTage]?</td:voltage<n> |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>  :IR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | :OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | :RRANge? MAXimum   MINimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | :RESistance <n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| i i       | :OFFSet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | [:VOLTage]?<br>     :BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | .BEST?<br>  :FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | [:SOURce]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i i       | [ [:VOLTage]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | :BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| :DC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | :SHORt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | :RRANge? <i>MAXimum</i>   <i>MINimum</i><br>:RESistance <n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | :OFFSet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | :BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | :FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i i       | :BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| :OS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | :VRANge? MAXimum   MINimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | :VOLTage <n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | :OFFSet<br>    [:SOURce]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | [:VOLTage] <number value=""></number>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | [:VOLTage]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| l l       | BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | :FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | [:SOURce]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | [:VOLTage] < <i>number value&gt;</i><br>    [:VOLTage]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | :BEST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 9.8.2 Command Summary

■ :CALibration:REQuest?

It requests to calibrate the device and returns 1 if successful and 0 if it fails.

■ :CALibration:RELease

It exits the test screen.

■ :CALibration:STATe <boolean> | ON | OFF

It sets if calibrating data (1) or (0). \*RST command will change the state to ON.

CALibration:VALue <Numeric\_Value>

It inputs the calibration data. The error of -203 "Command protected" will occur if it is not in calibration or output state unless the execution is wrong.

CALibration:SAFety:STARt

It begins to output voltage and is available for calibration data input. Sending this command in non-calibration state, the error of –203 "Command protected" will occur.

CALibration:SAFety:STOP

It stops outputting power source.

CALibration:SAFety:WVAC:ARANge? MAXimum | MINimum

It queries the maximum and minimum of ARC calibration range code in WVAC mode.

CALibration:SAFety:WVAC:ARC<n>:SLOPe[:SOURce][:VOLTage] <Numeric Value>

It changes to ARC in WVAC mode and sets the output voltage for calibration.

■ :CALibration:SAFety:WVAC:ARC<n>:SLOPe[:SOURce][:VOLTage]?

It changes to ARC in WVAC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:ARC<n>:SLOPe:BEST?

It changes to ARC in WVAC mode and returns to the best ARC value selected by device.

CALibration:SAFety:WVAC:CRANge? MAXimum | MINimum

It queries the maximum and minimum of current meter calibration range code in WVAC mode.

CALibration:SAFety:WVAC:CURRent<n>:OFFSet[:SOURce][:VOLTage]
<Numeric Value>

It changes to the offset of current meter in WVAC mode and sets the output voltage used for calibration. The traversal of header tree selects the current calibration range code.

CALibration:SAFety:WVAC:CURRent<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of current meter in WVAC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:CURRent<n>:OFFSet:BEST?

It changes to the offset of current meter in AC mode and returns to the best value selected by device.

CALibration:SAFety:WVAC:CURRent<n>:FULL[:SOURce][:VOLTage]<Numeric Value>

It changes to all items in WVAC mode of current meter and sets the output voltage used for calibration.

CALibration:SAFety:WVAC:CURRent<n>:FULL[:SOURce][:VOLTage]?

It changes to all items in WVAC mode of current meter and returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:CURRent<n>:FULL:BEST?

It changes to all items in WVAC mode of current meter and returns to the best value selected by device.

CALibration:SAFety:WVAC:RCRange? MAXimum | MINimum

It queries the maximum and minimum of real current meter calibration range code in WVAC mode.

:CALibration:SAFety:WVAC:RCURrent<n>:OFFSet[:SOURce][:VOLTage]

It changes to the offset in WVAC mode of real current meter and sets the output voltage used for calibration. The traversal of header tree selects the code of current calibration range.

CALibration:SAFety:WVAC:RCURrent<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset in WVAC mode of real current meter and returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:RCURrent<n>:OFFSet:BEST?

It changes to the offset in WVAC mode of real current meter and returns to the best value selected by device.

CALibration:SAFety:WVAC:RCURrent<n>:FULL[:SOURce][:VOLTage]
<Numeric Value>

It changes to all items in WVAC mode of real current meter and sets the output voltage used for calibration.

CALibration:SAFety:WVAC:RCURrent<n>:FULL[:SOURce][:VOLTage]?

It changes to all items in WVAC mode of real current meter and returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:RCURrent<n>:FULL:BEST?

It changes to all items in WVAC mode of real current meter and returns to the best value selected by device.

CALibration:SAFety:WVAC:VRANge? MAXimum | MINimum

It queries the maximum and minimum of calibration range code for power supply and meter in WVAC mode.

CALibration:SAFety:WVAC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]
<Numeric Value>

It changes to the offset of power supply and voltage meter in WVAC mode to set the output voltage used for calibration.

■ :CALibration:SAFety:WVAC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of power supply and voltage meter in WVAC mode, also returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:VOLTage<n>:OFFSet:BEST?

It changes to the offset of power supply and voltage meter in WVAC mode, also returns to the best value selected by device.

CALibration:SAFety:WVAC:VOLTage<n>:FULL[:SOURce][:VOLTage]
<Numeric Value>

It changes to all items of power supply and voltage meter in WVAC mode to set the output voltage used for calibration.

CALibration:SAFety:WVAC:VOLTage<n>:FULL[:SOURce][:VOLTage]?

It changes to all items of power supply and voltage meter in WVAC mode, also returns to the output voltage used for calibration.

CALibration:SAFety:WVAC:VOLTage<n>:FULL:BEST?

It changes to all items of power supply and voltage meter in WVAC mode, also returns to the best value selected by device.

CALibration:SAFety:WVDC:ARANge? MAXimum | MINimum

It queries the maximum and minimum of the calibration range code for the ARC in WVDC mode.

CALibration:SAFety:WVDC:ARC<n>:SLOPe[:SOURce][:VOLTage] <Numeric Value>

It changes to the ARC in WVDC mode and sets the output voltage used for calibration.

CALibration:SAFety:WVDC:ARC<n>:SLOPe[:SOURce][:VOLTage]?

It changes to the ARC in WVDC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVDC:ARC<n>:SLOPe:BEST?

It changes to the ARC in WVDC mode and returns to the best ARC value selected by device.

CALibration:SAFety:WDC:CRANge? MAXimum MINimum

It queries the maximum and minimum of current meter in WVDC mode.

CALibration:SAFety:WVDC:CURRent<n>:OFFSet[:SOURce][:VOLTage]
<Numeric Value>

It changes to the offset of current meter in WVDC mode and sets the output voltage used for calibration. The traversal of header tree selects the code of current calibration range.

■ :CALibration:SAFety:WVDC:CURRent<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of current meter in WVDC mode and returns to the output voltage used for calibration.

■ :CALibration:SAFety:WVDC:CURRent<n>:OFFSet:BEST?

It changes to the offset of current meter in WVDC mode and returns to the best value selected by device.

CALibration:SAFety:WVDC:CURRent<n>:FULL[:SOURce][:VOLTage]
<Numeric Value>

It changes to all items of current meter in WVDC mode and sets the output voltage used for calibration.

■ :CALibration:SAFety:WVDC:CURRent<n>:FULL[:SOURce][:VOLTage]?

It changes to all items of current meter in WVDC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVDC:CURRent<n>:FULL:BEST?

It changes to all items of current meter in WVDC mode and returns to the best value selected by device.

CALibration:SAFety:WVDC:VRANge? MAXimum | MINimum

It queries the maximum and minimum of calibration range code for power supply in WVDC mode.

CALibration:SAFety:WVDC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]
<Numeric Value>

It changes to the offset of power supply and voltage meter in WVDC mode and sets the output voltage used for calibration.

■ :CALibration:SAFety:WVDC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of power supply and voltage meter in WVDC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVDC:VOLTage<n>:OFFSet:BEST?

It changes to the offset of power supply and voltage meter in WVDC mode and returns to the best value selected by device.

CALibration:SAFety:WVDC:VOLTage<n>:FULL[:SOURce][:VOLTage]
<Numeric Value>

It changes to all items of power supply and voltage meter in WVDC mode and sets the output voltage used for calibration.

CALibration:SAFety:WVDC:VOLTage<n>:FULL[:SOURce][:VOLTage]?

It changes to all items of power supply and voltage meter in WVDC mode and returns to the output voltage used for calibration.

CALibration:SAFety:WVDC:VOLTage<n>:FULL:BEST?

It changes to all items of power supply and voltage meter in WVDC mode and returns to the best value selected by device.

CALibration:SAFety:IR:OPEN

It changes to get the open current meter readings in IR mode.

CALibration:SAFety:IR:RRANge? MAXimum | MINimum

It queries the maximum and minimum of calibration range code for resistance meter in IR mode.

CALibration:SAFety:IR:RESistance<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of resistance meter in IR mode and returns to the output voltage used for calibration.

CALibration:SAFety:IR:RESistance<n>:OFFSet:BEST?

It changes to the offset of resistance meter in IR mode and returns to the best value selected by device.

CALibration:SAFety:IR:RESistance<n>:FULL[:SOURce][:VOLTage]?

It changes to all items of resistance meter in IR mode and returns to the output voltage used for calibration.

■ :CALibration:SAFety:IR:RESistance<n>:FULL:BEST?

It changes to all items of resistance meter in IR mode and returns to the best value selected by device.

CALibration:SAFety:DCR:SHORt

It changes to get the short resistance meter readings in DCR mode.

CALibration:SAFety:DCR:RRANge? MAXimum | MINimum

It queries the maximum and minimum of calibration range code for resistance meter in DCR mode.

CALibration:SAFety:DCR:RESistance<n>:OFFSet:BEST?

It changes to the offset of resistance meter in DCR mode and returns to the best value selected by device.

CALibration:SAFety:DCR:RESistance<n>:FULL:BEST?

It changes to all items of resistance meter in DCR mode and returns to the best value selected by device.

CALibration:SAFety:OSC:VRANge? MAXimum | MINimum

It queries the maximum and minimum of calibration range code for power supply meter in OSC mode.

CALibration:SAFety:OSC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]
<Numeric Value>

It changes to the offset of power supply and voltage meter in OSC mode and sets the output voltage used for calibration.

CALibration:SAFety:OSC:VOLTage<n>:OFFSet[:SOURce][:VOLTage]?

It changes to the offset of power supply and voltage meter in OSC mode and returns to the output voltage used for calibration.

CALibration:SAFety:OSC:VOLTage<n>:OFFSet:BEST?

It changes to the offset of power supply and voltage meter in OSC mode and returns to the best value selected by device.

CALibration:SAFety:OSC:VOLTage<n>:FULL[:SOURce][:VOLTage]
<Numeric Value>

It changes to all items of power supply and voltage meter in OSC mode and sets the output voltage used for calibration.

■ :CALibration:SAFety:OSC:VOLTage<n>:FULL[:SOURce][:VOLTage]?

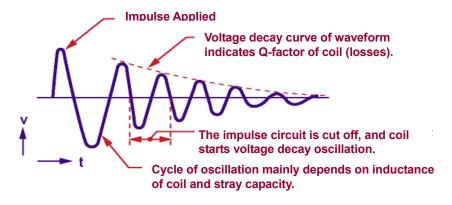
It changes to all items of power supply and voltage meter in OSC mode and returns to the output voltage used for calibration.

CALibration:SAFety:OSC:VOLTage<n>:FULL:BEST?

It changes to all items of power supply and voltage meter in OSC mode and returns to the best value selected by device.

# **10. Using Impulse Winding Tester**

### **10.1 Features & Functions**


The Impulse Winding Tester is equipped with the following commonly used detection methods.

- (1) Area Size Comparison
- (2) Differential Area Comparison
- (3) Flutter Value Comparison
- (4) Laplacian Value Comparison

By choosing a combination of various detection functions, it can test the vast majority of winding coils in the industry.

### **10.2 Introduction to Impulse Test**

The Impulse Coil Winding Tester tests the electrical characteristics of coil winding without giving damage to the samples. The prerequisite conditions for quality of a coil can be detected at just a glance. The detection is carried out when the same electric impulse by capacitor discharge is applied to the master and the test coils. The voltage decay waveform is generated in response to the impulse, related to the Q-factor and inductance (impedance) of the coils. In this sense, the tester can detect turn & layer short, the differences in the number of turns and the material of the core. If high impulse voltage is applied, the poor insulation will appear as corona or layer discharge.



## **10.3 Specification**

| Applied Voltage, Step, and                                        | 500V – 5000V                                                                                      |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Energy                                                            | 100V                                                                                              |  |  |  |
| * At 1 kOhm Resistive Load                                        | Max 0.12 Joules                                                                                   |  |  |  |
| Inductance Test Range                                             | More than 10uH                                                                                    |  |  |  |
| Sampling Speed/Feq.                                               | 8 bit / 10 ns (100 MHz)                                                                           |  |  |  |
| Sampling Memory                                                   | 8192 Byte                                                                                         |  |  |  |
| Sampling Range                                                    | Total 10 ranges: -4, -3, -2, -1, 0, 1, 2, 3, 4, 5<br>(Range 0 to 5 are compatible with DW Series) |  |  |  |
| Input Test Circuit (Impedance)                                    | Resistive Voltage Divider (5 MΩ)                                                                  |  |  |  |
| Screen Display Resolution                                         | 640 x 480 (VGA), 4 colors, 8.4 inch. TFT color LCD                                                |  |  |  |
| Waveform Display Range                                            | 512 x 256 dots                                                                                    |  |  |  |
|                                                                   | Master Waveform Comparison: Waveform Comparison /                                                 |  |  |  |
| Detection Mode                                                    | Area Size Comparison / Differential Area Comparison                                               |  |  |  |
|                                                                   | Flutter or Laplacian Discharge                                                                    |  |  |  |
|                                                                   | Internal Memory: 42 types (14 types per page, total 3                                             |  |  |  |
| Master Waveform Memory                                            | pages)                                                                                            |  |  |  |
| Master Wavelorn Memory                                            | Extended CF Memory Card: 700 types (14 types per page,                                            |  |  |  |
|                                                                   | total 50 pages)                                                                                   |  |  |  |
| * All specifications are subject to change without prior notices. |                                                                                                   |  |  |  |

All specifications are subject to change without prior notices.

### 10.4 Acceptance (OK) / Rejection (NG) Detection

#### AREA SIZE

This compares each area size of the master coil and the sample coil waveforms in the intentionally determined zone. In Figure 10-1, the area size is calculated between 'a' and 'b', and OK/NG (Pass/Fail) is determined by comparing the area size (i.e. what percent (%) the sample waveform's area size differs from that of the master waveform). The detecting criterion is set by %. When the result is within the set value in %, the test coil is considered to be "OK". The area size of the waveform is nearly proportional to the energy loss in the coil; therefore, the test coil is considered to be OK/NG by the amount of its energy loss. For example, when a sample coil layer has a short circuit, the short circuit area is reflected as an increase of energy loss.



Figure 10-1

#### • DIFFERENTIAL AREA

This calculates the area size of differential portion between the master coil and the sample coil waveforms in the intentionally determined zone. In Figure 10-2, the differential area size is calculated between 'a' and 'b', and OK/NG is judged by detecting how large the differential area size is. The detecting criterion is set by %. When the result is within the set value in %, it is considered to be "OK". The differential area size represents the change in L value and total energy loss. This method is especially effective, for example, when the change of the L value causes major problems.

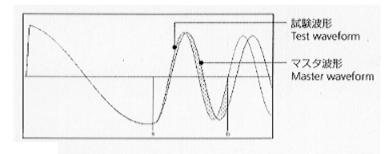



Figure 10-2

#### • FLUTTER VALUE

Regardless of the difference in waveforms, this method only detects the high frequency energy of corona discharge as shown in Figure 10-3. It detects the corona value in the intentionally determined zone of the waveform, and judges OK/NG by the corona evaluation value. The detecting criterion is set by an integer. The result that appears within the range is considered to be "OK". The waveform is converted by derivative calculation and then its area size is calculated. In an equivalent analog circuit, the energy value of the waveform that passes through a high pass filter is measured.

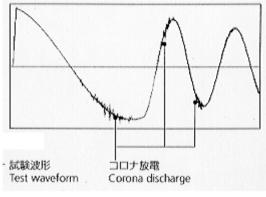
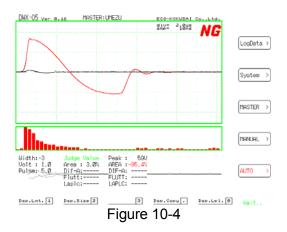




Figure 10-3

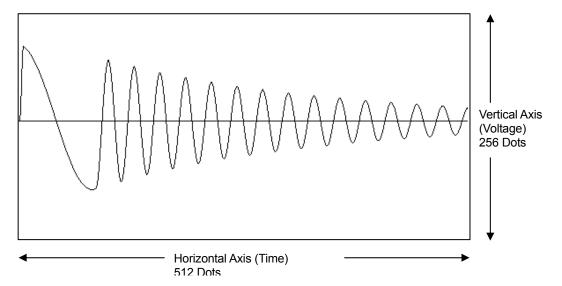
LAPLACIAN VALUE

The Laplacian is a method in digital filter processing used for detecting the edge intensity of an image. In the application to the Flutter Value, it measures the 2<sup>nd</sup> derivative of the image to find and extract the partial discharge. The discontinuity of the value hidden in the waveform data (noise) can be digitized, offering an easier detection of the partial discharge (Figure 10-4).



• VISUAL COMPARISON

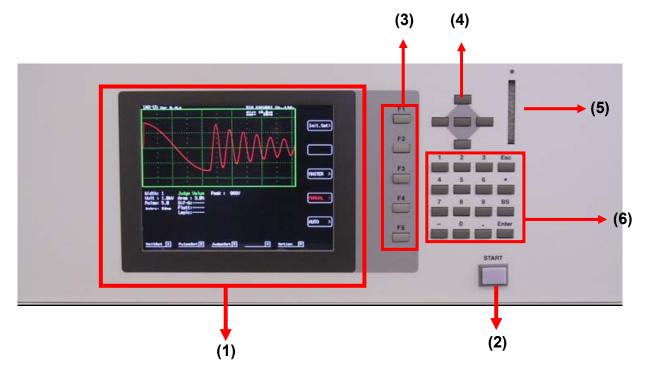
The superimposed master and sample waveforms are displayed on the screen at the same time. This allows an easy observation of the differences in characteristics of the two coils.


### **10.5 Waveform Resolution**

The transient waveform, generated by the applied impulse, is digitized by a microcomputer and the high speed A/D converter. The memory capacity available for a single transient waveform of the Impulse Winding Tester is 8192 bytes (one sample point per one byte). In other words, a maximum of 8192 sampling points can be used to record a transient waveform. The obtained data then is used for display on the LCD, and for OK/NG detection according to the preset criteria.

In case of a coil with a fast transient waveform (a greater frequency), the levels of sampling points are much different from one another, so a slow A/D converter cannot follow the changes. For the Impulse Winding Tester, the 10 nano-seconds speedy A/D converter is used in order to digitize the high-speed transient waveform.

The above has described the sample point numbers (resolution) in the time (horizontal) axis. This basic resolution principle can also be applied to the level (vertical) axis. In the Impulse Winding Tester, 0 to  $\pm$ 128 points are available for each sampling point, that is, a total of 256 points in the voltage axis.


As seen above, the digital system has some advantages over the analog system. Each sampling point can be clearly defined in terms of values, resulting in easier and more reliable data storage, data recall, and data comparison.

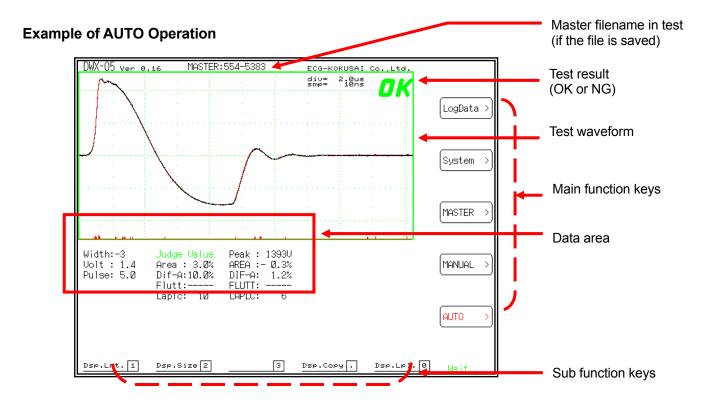


In the Impulse Winding Tester, the horizontal and vertical scale appearing on the screen can give the information about the waveform temporarily. The horizontal scale is the time axis, with fine point division scale of 100 dots. The coarse division scale indicates half of it with 50 dots. The time of one scale line appearing on the right top of the waveform screen is 100 dots between the time scale. The vertical scale is the voltage axis, with fine point division scale of 100 dots.

# **11. Names & Functions**

### 11.1 Front Panel




- 8.4-Inch Color TFT Liquid Crystal Display The master waveform and test waveforms are displayed in color and the test result can be judged at once.
- (2) START Button (Push ON) Start Testing
- (3) Function Keys F1 ~ F5 (Push ON)
- Operation keys and functions are varied by screen as indicated on the left. (4) Up/Down/Left/Right Movement Keys
- Select the function menu, set the sampling and comparison range.
- (5) CF Memory Card Slot
- For extended memory use. The Compact Flash (CF) memory card is applicable. (6) Numerical Input

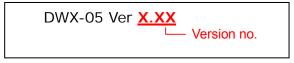
[0] ~ [9] and the dot [  $\cdot$  ] : Use to input impulse voltage, impulse count, detection condition and access filename.

[\*] & [-] : The auxiliary buttons for setting detection conditions. [\*]  $\rightarrow$  Start setting [-]  $\rightarrow$  Do not detect.

[Esc] : Escape from the present status. (Same as the Esc key on PC.) [BS]  $\rightarrow$  Short for [Backspace] for filename editing.

## 11.2 LCD Screen




#### **Example of MASTER Operation**

|                 |                                                                             |                      |          | <ul> <li>Master name list</li> </ul>  |
|-----------------|-----------------------------------------------------------------------------|----------------------|----------|---------------------------------------|
| DWX-05 ver 0.16 | MASTER:DWX-SERIES                                                           | ECG-KOKUSAI Co.,Ltd. |          |                                       |
|                 | MASTER FILE PAG<br>No:Model Name :WI:                                       | E:1<br>VOL:PLS       |          |                                       |
|                 | 11:ECG-KOKUSAI :-3:<br>12:554-5383 :-3:<br>13:DWX-SERIES :-3:<br>14:<br>15: | 1.4:5.0              | Save >   | Main function keys                    |
|                 | 13:<br>16:<br>17:<br>18:<br>19:<br>1A:                                      |                      | MASTER > |                                       |
|                 | 1B:<br>1C:<br>1D:<br>1E:                                                    |                      |          |                                       |
|                 |                                                                             |                      | (AUTO >) |                                       |
| FileCler 1 Page | eCler 2 PageInc. 3                                                          | 4 CardFile5          | Wait.    | <ul> <li>Sub function keys</li> </ul> |

# **12. Preparation before Use**

## 12.1 Main Screen

After turning on the power switch, the LCD will display the main screen. The tester will make a self-check for 2 seconds. The software version number will be displayed in the upper left corner of the LCD screen.



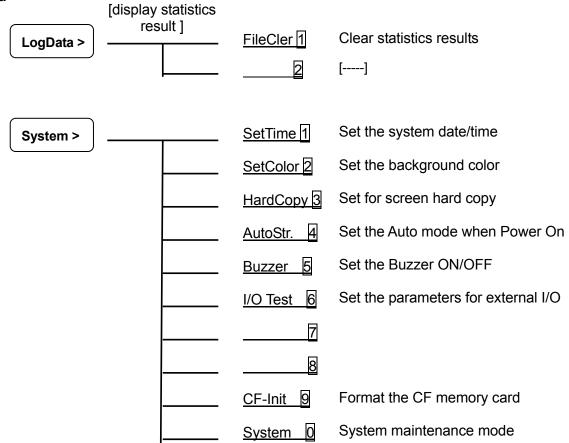
The following shows the names and functions of each icon on the main screen.

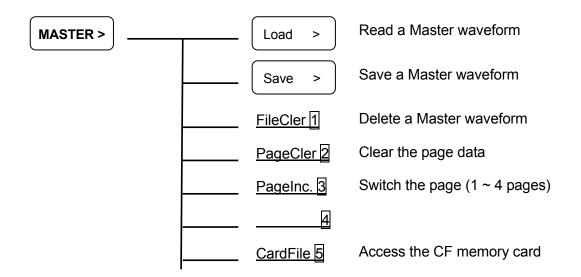
| LogData > | Statistics of the test result.<br>Ex. Displaying the statistics result.                              |
|-----------|------------------------------------------------------------------------------------------------------|
| System >  | Setting the system parameters.<br>Ex: Date/Time setting screen color and etc.                        |
| MASTER >  | Managing the master waveform files.<br>Ex: Save, read files etc.                                     |
| MANUAL >  | Setting the master waveform manually.<br>Ex. Pulse voltage, count, criteria and etc.                 |
| AUTO >    | Setting Auto for good and no good test (GO/NG test.)<br>Ex. Press [START] to execute GO/NG judgment. |

### 12.2 Menus

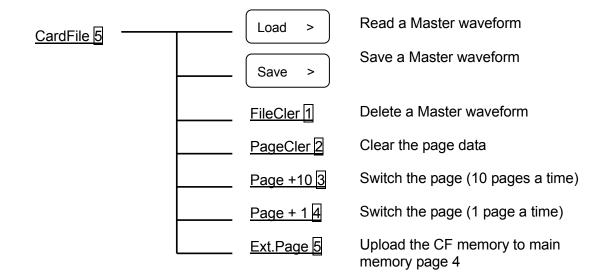
The illustration below is an overview of each menu function. For more details, please refer to the explanation of each topic.

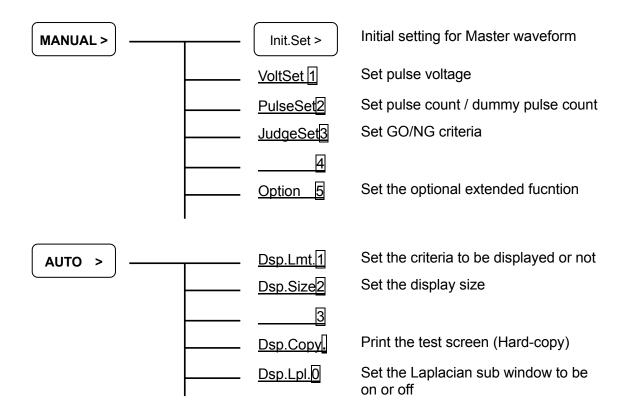
#### Icon mark


This icon indicates the function key [Fn] at the right where n is the number.




LogData >


This icon indicates sub-keys [n] on the lower screen.


#### Menu





Accessing CF Memory Card

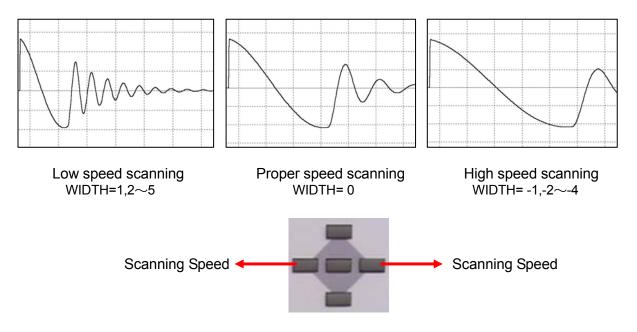




# **13. MANUAL Operation**

The purpose of MANUAL > operation is to set the related parameters of Master waveform.

## 13.1 Setting the Scanning Speed [WIDTH]


Use the movement keys to set the scan speed display. The setting can be in the range of -4 to +5.

-4 : The displayed waveform is enlarged (extended form) by the high speed scanning.

0 : This is the common scan speed.

+5 : The low speed scanning condenses the displayed waveform.

Use the <u>rotary dial</u> to set the scan speed and the <u>Init.Set ></u> mode to draw the waveform.



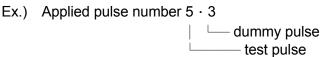
Press [START] and the pulse is applied in the manual mode setting. The waveform will be displayed according to the scan speed. It can change the WIDTH setting and press [START] to apply the pulse again to confirm the proper scan speed.

Please refer to Appendix 18.5 WIDTH for detail scanning speed.

# 13.2 Setting Pulse Voltage – [1] Key [VoltSet 1]

It is necessary to set the pulse voltage to be applied before conducting the Master test (the most applicable voltage is varied by different wound components.) The pulse voltage ranges can be set are listed in the table below:

| Pulse Voltage Range |      |        |  |
|---------------------|------|--------|--|
| Lowest Highest Step |      |        |  |
| 0.5 KV              | 5 KV | 0.1 KV |  |


The set voltage will be applied to the coil by pressing the Init.Set > [F1] key, and the master waveform will be shown.

# 13.3 Setting Pulse No. – [2] Key [PulseSet2]

Enter the pulse number to be applied to the coils in the AUTO mode test. The available pulse number range is from <u>1 to 30</u>. The set pulse number is reflected when generating the Master waveform and testing coils in the AUTO mode.

In addition, it can set the Dummy Pulse when setting the pulse number by entering the dummy pulse number after the decimal point. For example, 5.3 means to apply 3 times of dummy pulses (without judgment) and then apply 5 times of pulse with judgment function (8 times in total.)

The available dummy pulse number range is from 0 to 7. The dummy pulse will not be applied when setting at 0.



\* About the dummy pulse, please refer to the section 13.9 Pre-magnetization (Dummy Pulse.)

# 13.4 Setting Initial Master Waveform – [F1] Init.Set>

To get the Master waveform, it is necessary to apply pulse to the good coils. All data set in above process will be reflected in the applied pulses.

Follow the number pulse no. set in section 13.3, it will be averaged to create a master waveform.

Depending on the setting condition, the initialization may result in error. Please change the condition of applied pulses. Ex. Check if the voltage is too high for applying the pulse or the wound component is defect.

**CAUTION** The cases of an Initialization ERROR.

- (1) The applied voltage is not proper. The connected coils produce corona discharge internally.
- (2) The [WIDTH] setting is not proper. The cycle of the waveform on the screen is extremely short.
- (3) The coil is easily exposed to magnetic saturation. The voltage cannot be applied up to the set value.
- (4) The coil's inductance/impedance is low. The voltage output cannot
  - reach up to the set value due to the limited energy of impulse source.

## 13.5 Setting Test Condition -- [3] [JudgeSet3]

The master waveform from the initial setting in the <u>Init.Set ></u> mode is used as an evaluation base. The condition setting is carried out in the following order.

- AREA
- DIF-AREA
- FLUTTER
- LAPLACIAN
- (1) First, select to [detect] or [not detect]. [\*] key = detect [-] key = not detect
- (2) Second, set the start and end of the test range using the left and right buttons, or follow the instructions on the screen to set the test range. Once the range is set, press [Enter] to complete the setting.
- (3) Next, use the numeral keys to input the test peak value. "AREA", "DIF-AREA" is 0.1%  $\sim$  99.9%. "FLUTTER", "LAPLACIAN" is an integer between 1 $\sim$ 9999.
- (4) Press [Enter] key to valid each value after entering.
- (5) To cancel the process, press [Esc] key.
- (6) If the result is beyond expected due to wrong conditions, enter the value again to a correct result.
- \* If selecting [not detect] in (1), the test result will not be shown on the display. The screen will appear blank [- - -].
- Notice In testing, select either the Laplacian test or the FLUTTER test. The set value will be effective accordingly. To make the Laplacian test, press the [ ] key to skip the FLUTTER test. Press the [\*] in the Laplacian topic and set the test range. The setting of the Laplacian is the same as that of the FLUTTER test.

In the FLUTTER test, the threshold value can be set. Please refer to section 13.7 About the Threshold value.

# 13.6 [START] Switch

Impulses are applied independently. The waveform, which data is based on the initial setting, will be drawn on the screen when the [START] switch is pressed. Press MANUAL > key to delete the screen.

## 13.7 The Threshold of Flutter

When evaluating the flutter value, the height of corona discharge on the waveform is measured and converted by derivative calculation. The area size is then calculated. A threshold value is established for measuring the height of corona discharge and the area size is calculated from the value above the threshold. This method is especially useful to test coils that are easily exposed to corona discharge in which its distribution causes problems on a corona level (height.)

To set the threshold value, enter the value for evaluating at the FLUTTER value display according to the setting method in section 13.5 Setting Test Condition. After entering the threshold value and pressing the [\*] key at this FLUTTER value display, the new FLUTTER value will be recalculated and shown. The set threshold value will be used in the test condition setting. The range of the threshold value is  $0 \sim 20$ .

- \* **Note:** There is no unit for the threshold value and it is varied with the maximum and minimum Flutter values when the initial impulse was applied in the Init.Set > mode.
- Notice In setting the FLUTTER threshold value, please refer to the FLUTTER'S MAX & MIN values in Figure 13-1. To obtain the true values of the sample coils, bring good sample coils (about 10 pieces), apply impulses temporarily and confirm the FLUTTER'S MAX & MIN values. Add an nn% margin to the MAX true value and take this new value as a temporary test value. Retest the sample coils to confirm if they are good or bad ones. This test helps to determine the fault boundary. (Recommended only.)

Threshold Value  $F \perp \cup T T (1)$   $M \land X = 1 2 0$  — maximum value  $M \mid N = 1 1 2$  — minimum value Press the [\*] after entering the number

Figure 13-1

### **13.8 The Impulse Numbers to be Applied**

Before executing [AUTO] test, it needs to set the number of times for applying pulse. The number of applied pulses to be set is proportional to the test time. Based on the design, a series of impulses at 52.4 milli-second interval to the coils. That means the more impulses applied, the more test time is required. Please refer to the table below for the total required test time.

Impulse numbers and the required test time (Standard)

| Impulse<br>Numbers | Time<br>(Seconds) |
|--------------------|-------------------|
| 1                  | 1.0               |
| 5                  | 1.5               |
| 10                 | 2.0               |

## 13.9 Pre-magnetization (Dummy Pulse)

When testing the motor or solenoid coils, some magnetic field may remain in the core of the coils even after the flow of the current is cut off. In this case, the waveform responding to the first impulse will differ from second response. As a result, the unstable waveform will invite misjudgment. For the solution of the above problem, proper Dummy Pulse can be applied to initialize the remaining magnetic field prior to the test pulses. See section 13.3 for detail description.

## 13.10 Caution for Settings

### **CAUTION**

The wound components are easily affected by the magnetic filed or floating capacity due to their characteristics. Conducting tests in such environment it is necessary to consider the installation ambient or the fixture connection of the coils to be tested to ensure the accuracy. It is needed to pay attention to the usage and test environment of Coreless Coils as they are the most sensitive.

Before conducting the test of the Master waveform got from initial setting, be sure that the test environment is the same as the one for executing the master waveform initial setting to enhance the accuracy under the same test conditions. Steel desks will affect the testing condition for impulse testing. If a steel desk must be used, place a non-metal plate or thick Bakelite to reduce influence on the coils.

The test cable is another important factor of the environment. Be sure that the test cable used for GO/NG test is the same as the one used for initial setting of Master waveform, especially in length and the stranded style.

# 14. Using MASTER

In this function, the master waveform data which is preset in the MANUAL > mode will be stored on the internal memory. The data can also be recalled, deleted, or confirmed.

Total 42 channels of Master data can be stored in the built-in standard memory. They are divided into 3 pages and each page has 14 channels. There is another page for extension memory called PAGE 4 and it is reserved for uploading the CF memory card.

Below shows the structure of the master file.

| Internal Memory             |                             |                             |                                                               |
|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------------|
| PAGE:1                      | P A G E : 2                 | P A G E : 3                 | PAGE:4                                                        |
| Master Data<br>1 4 Channels | Master Data<br>1 4 Channels | Master Data<br>1 4 Channels | Master Data<br>1 4 Channels<br>Reserved for<br>CF card upload |

The internal memory can save 14 channels  $\times$  3 pages = 42 channels of Master data.

The page will be switched sequentially with the rotary dial or the PageInc. 3 key.

**Notice** PAGE 4 memory is also called the extended memory that is reserved in the partition of main memory. This function works with CF memory card only. The page space does not exist unless the CF memory card is inserted. The data of page 4 can be set to any channels of the 50 pages in CF memory card (same as the 14 channels in each page.) The data taken from the memory card can be handled in the same way as those in the internal memory.

The master data is numbered from 1 to E (1,2,3,4,5,6,7,8,9,A,B,C,D,E) from storage. The filename of page number and channel can be retrieved by external command.

### 14.1 Loading the Master Data -- [F1] Load >

To select the master data, use either a rotary dial or the <u>PageInc.</u> key to move the cursor for selection or input the master name and press [Enter] to load it.

\* Press [Esc] key to cancel the operation.

### 14.2 Saving the Master Data -- [F2] Save >

The master waveform data will be stored on the selected page. The filename can be the combination of numbers, letters, or symbols. The model name contains 8 characters of the master name and 3 characters of the extended name.

Ex: XXXXXXXX · XXX Extended Name (Max. 3 characters) Master Name (Max. 8 characters)

- \* When the input name is not in the range specified above, "error" will appear on the screen.
- \* If same file name exists in the internal memory, the system will remind the user if it will be overwritten.

Now, "Yes" = [1] key  $\rightarrow$  overwrite the file with the same filename.

Press [Esc] to cancel the operation.

Notice Input Alphabet Letters :

When entering the Master data filename, press ABC..off> and use the movement keys to select the English alphabet letters. Press [Enter] when done.

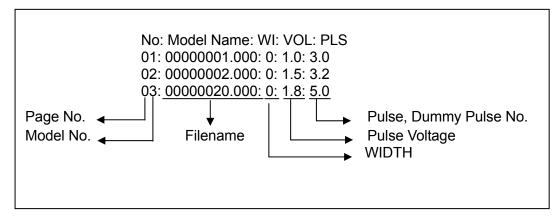
### 14.3 Deleting the Master Data -- [1] [FileCler1]

Use the movement keys to select the file or enter the Master data filename directly for deletion.

\* When the system prompts for deletion, "Yes" = [1] key to delete it. Press other keys to cancel the deletion.

Press [Esc] to cancel the operation.

### 14.4 Clearing the Master Page -- [2] [PageCler2]


- \* Select the page to be deleted, "Yes" = [1] key to clear the page. Press other keys to cancel the action.
- \* The page deletion is restricted to the selected page only.

Press [Esc] to cancel the operation.

## 14.5 Switching the Master Page -- [3] [PageInc.3]

The page will be switched sequentially from 1 to 4. There are 2 digits for the No. in the list. The  $1^{st}$  digit is the page number and the  $2^{nd}$  digit is the memory channel number (  $(1 \sim E)$ . The followings are the filename and related parameters.

Example:



# 15. Using AUTO Mode – GO/NG Test

Press [START] switch in AUTO > mode to test the coil for OK or NG result based on the master data. The AUTO test screen will show the test conditions of WIDTH, VOLT, PULSE, the OK/NG result, voltage output peak (Vpp), and the test results of AREA, DIF. AREA, FLUTTER as well as LAPLACIAN.

- AREA shows plus or minus value in % of the compared area size.
- DIF-AREA displays the % value of the differential area size in absolute value against the area size of the master waveform. The value is an average of the calculated range of all the applied impulses.
- FLUTTER shows the maximum value of all the applied pulses, with each applied pulses expressed in integer value.
- LAPLACIAN shows the maximum value all the applied pulses, with each applied pulses expressed in peak value.

### 15.1 Test Range Confirmation -- [1] [Dsp.Lmt.1]

This displays the test range of the master waveform.

The ranges are the dotted line near the zero line indicating the parameters of the AREA, DIF. AREA, FLUTTER or LAPLACIAN.

## 15.2 Laplacian Sub-Window -- [0] [Dsp.Lpl.0]

In the AUTO mode, a sub-window will appear below the test waveform screen. It shows a bar graph of the calculated Laplacian results. By pressing this key again, the sub-window will disappear.

When the sub-window is displayed, the test speed will be slightly slower because of the tester's additional process time.

In the bar graph display, the waveform screen in the X-axis (time axis) is divided into 51 segments (bars). In each segment, the corona discharge level with peak value, represented in vertical dot numbers, is displayed as a bar graph.

The bar graph has no special measured unit. When there is corona discharge phenomena, the bar value becomes higher. This helps to observe the discharge amount and level visually.

The bar graph will be displayed even if the setting is not done in the Laplacian test mode.

# **16. Test Result Statistics Display**

LogData > is a very useful tool in analyzing the yield and defect rate. It can count the occurrences of OK and NG.

The display will show the number of TOTAL, OK and NG.

# 16.1 Clearing the Statistics -- [1] [Clear 1]

The statistics will be cleared to zero.

# 17. Setting the System

Use System > to do the system related parameters setting.

# 17.1 Setting the System Date/Time -- [1] [SetTime 1]

It sets the system's date and time.

The setting format and sequence is Year (YY), Month (MM), Day (DD), Hour (HH) and Minute (MM). Each has 2 digits for input. Press [Enter] when the input is done and move to next item.

Press [Esc] to cancel the operation.

# 17.2 Setting the LCD Screen Color -- [2] [SetColor2]

It sets the background color of the LCD screen.

Use the buttons to change the 3 RGB (Red, Green, Blue) colors in proportional for background color setting.

The scale of each color is between 0~15, 0 is the lightest and 15 is the darkest.

| Red   | ٧ | [F1] key | setting the red color   |
|-------|---|----------|-------------------------|
| Green | ٧ | [F2] key | setting the green color |
| Blue  | ٧ | [F3] key | setting the blue color  |

Press [Esc] to cancel the operation.

The settings will be stored in the system.

To restore to the factory default, press [\*] in the main menu.

# 17.3 Start-up Setting for AUTO Mode -- [4][AutoStr.4]

This function sets the device to go to AUTO mode directly when switching on the power.

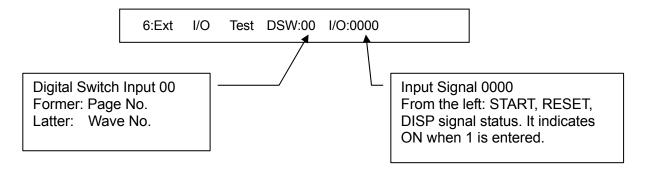
| OFF | 1> |
|-----|----|
| ON  | 2> |

[F1] key: AUTO mode disabled (OFF) [F2] key: AUTO mode enabled (ON)

The settings will be stored in the system.

# 17.4 Setting the Buzzer -- [5] [Buzzer 5]

This function sets the buzzer On/Off in AUTO mode.


| OFF | 1> |
|-----|----|
| ON  | 2> |

[F1] key: Turn off the buzzer. [F2] key: Turn on the buzzer.

The settings will be stored in the system.

# 17.5 Monitoring External I/O Signals -- [6] [I/O Test6]

It can monitor the external I/O signals for on-line status on the screen.



# 17.6 Setting Baudrate -- [7] [Baudrate 7]

#### 17.7 Reserved for Expansion -- [8][



This key is reserved for expansion use in the future.

# 17.8 Formatting Memory Card -- [9] [CF-Init.9]

It formats the CF memory card.

**CAUTION** Formatting will clear all the saved data in the memory. Be sure to confirm it before execution.

The CF memory card needs to be formatted for use after purchase. The system will prompt "Yes" = [1] key to conduct the formatting and press other keys will cancel it.

# 17.9 System Maintenance Mode -- [0] [System 0]

This function is reserved for Chroma use only.

# 18. Menu for CF Memory Card

The CF memory card not only can extend the main memory for backup use, it can also save and read the master data that increases the portability and interchangeability of data.

The CF memory card that complies with the JEIDA/PCMCIA standard can save up to 700 master data with a 32 MB CF memory card. When using the CF memory card for the first time, please insert it to the memory slot and execute  $\underline{CF-init.9}$  in the  $\underline{System} > \underline{Menu}$  to format it for use.

#### 18.1 Memory Card Menu

In the memory card operation, the master data can be saved, recalled, deleted and confirmed. The memory card also offers page basis communication with the internal memory to save, recall and delete the memory page.

The storage of the CF memory card is 14 channels in one page with a total of 50 pages in a 32MB CF memory card. Thus a 32MB memory card can manage 700 channels of master data.

Below shows the CF memory structure for managing the master data:

| 32 MB CF Memory Card        |                             |                             |  |                             |  |
|-----------------------------|-----------------------------|-----------------------------|--|-----------------------------|--|
| Page : 01                   | Page : 02                   | Page : 03                   |  | Page : 50                   |  |
| Master Data<br>1 4 channels | Master Data<br>1 4 channels | Master Data<br>1 4 channels |  | Master Data<br>1 4 channels |  |

- \* The memory card format is Microsoft Windows compatible. Working as the CF card download unit, the computer can manage master waveform files and manage the folder names P01 ~ P50 from the memory card and each page has 14 channels of master data.
- \* The data in the CF memory card can be controlled and accessed by RS-232C commands.

**CAUTION** 

- Do not use the PC to delete, copy and rename the file folders on the CF memory, or it may cause the device unable to access properly.
- The memory card uses FAT16 standard for format so it cannot respond to the long filename that has been used since Windows 95. If the long file name file is written in the PC and rewritten to the CF, it may not be read properly. Please pay special attention to it.

## 18.2 Loading the Waveform -- [F1] Load >

Follow the description in section 14.1 to recall the master data from the memory card. The master data is selected using the movement keys or by entering the filename directly.

See 14.1 for detail operation procedures.

### 18.3 Saving the Waveform -- [F2] Save >

Follow the description in section 14.2 to save the master data with set conditions to a certain page in the memory card.

See 14.2 for detail operation procedures.

When saving the master data to the memory card, the system does not automatically check for duplicate master name. Please refer to the section 18.7 for detail information.

### 18.4 Deleting the Waveform -- [1] [FileCler1]

Follow the description in section 14.3 to delete the specified master data from the memory card.

See 14.3 for detail operation procedures.

# 18.5 Clearing the Memory Page-- [2] [PageCler2]

When the system confirms the deletion, select "Yes" = [1] key to execute the deletion and press other keys to cancel it.

See 14.4 for detail operation procedures.

### 18.6 Switching the Memory Page-- [3] [PageInc.3]

Any of the following methods can be used to switch the memory page.

- \* Switch 1 page or 10 pages once.
- \* Key in the numeric key to change the page sequentially from  $0 \rightarrow 1 \rightarrow 2 \dots 9 \rightarrow 0$ .
- \* Use the button to switch the page.

# 18.7 Extended CF Page (Page 4) -- [5] [CardFile5]

Page 4 in the internal memory is the page for expansion use. The data of any page can be copied to this page for use when this memory card is applied.

\* This function is designed for the following application.
 Frequently use the external I/O control and switch the master data, also the number of waveform data is usually about 100 channels.

The management of Master data is in "Page". When there is a need to change to different master data, copy the page in the memory card to Page 4 and use a command to read it. Same as other pages, Page 4 can be accessed for 14 channels.

### **18.8 Cautions for Memory Card**

#### **CAUTION**

The memory card checks identical master file names within the same page when the master file is saved. However, it does not automatically check identical names of different files across pages. Therefore, it is possible that multiple identical file names are saved to a memory card. In this case, there will be no problem with the manual test operation. However, when recalling the master data by the remote operation through the RS-232C, the program will recognize the first file name discovered as the recalled master data. The program will not recall the rest of the identical file names.

# **19. Miscellaneous Info.**

#### 19.1 Message List

| 7.  | MASTER SAVE OK      | Indicates that the master data has been saved.           |
|-----|---------------------|----------------------------------------------------------|
| 8.  | == MEMORY FULL ==   | Backup memory is full.                                   |
| 9.  | = OVER WRITE OK? =  | Overwrites the master file which has already been saved. |
| 10. | = FILE CLEAR OK? =  | Confirms before deleting the file.                       |
| 11. | CARD FORMAT OK? =   | Confirms for formatting the CF memory card.              |
| 12. | FILE NOT FOUND      | Indicates that the specified file is not found.          |
| 13. | FILE NAME DOUBLED   | Indicates that the same file name already exists.        |
| 14. | FILE NAME ERROR     | Format of the input file name is wrong.                  |
| 15. | == TEST OK ==       | Memory test is completed.                                |
| 16. | xx TEST NG xx       | Memory test detects a fault.                             |
| 17. | <impulse></impulse> | Impulses has been applied.                               |
| 18. | - Error -           | Specified master name is in error.                       |
|     |                     |                                                          |

### **19.2 Periodic Maintenance**

The battery backup uses a lithium-ion secondary-battery, built-in type. The life of the battery is approximately 3 - 5 years (at the temperature  $23^{\circ}$ C). The battery will be charged while the power is on. If the power has been switched off for 1 or 2 months (the time period varies from case to case), the backup memory will be lost. In this case, please initialize the system to the factory default. Please be noted that the data in the memory card cannot be recovered once lost. Thus, it is suggested to backup the data in the main memory to the CF memory card or PC periodically. To replace the battery, please contact Chroma's service department.

### 19.3 System Default (All Reset)

This function conducts all reset to the internal memory.

Different from the reset conducts in the main menu for common memory, All Reset clears the entire system.

**Method:** Press and hold the [START] switch when the power if off and turn the [POWER] on, it will show the message below :

System Reset Sure ? Press [START] IF Yes

Press [START] if it is OK to do the reset. Press other key to cancel it.

**CAUTION** The data of all the internal memory will be deleted. Be careful when operating this function.

### 19.4 Self Test

The device will start self test as soon as the power is on.

If the power-on self test is normal, OK will appear after the version no. or it will show NG.

Normal: CPU PLD Ver. X.XX OK Error: CPU PLD Ver. X.XX NG

Once the message NG is prompted, it indicates the internal circuit may be failure. Please contact Chroma immediately.

| WIDTH<br>Range | A/D Sampling Time<br>(sec) | Display Dot step | Note        |
|----------------|----------------------------|------------------|-------------|
| -4             | 10 ns                      | 1/1              | The fastest |
| -3             | 10 ns                      | 1/2              |             |
| -2             | 10 ns                      | 1/3              |             |
| -1             | 10 ns                      | 1/4              |             |
| 0              | 10 ns                      | 1/5              |             |
| 1              | 20 ns                      | 1/5              |             |
| 2              | 20 ns                      | 1/10             |             |
| 3              | 50 ns                      | 1/8              |             |
| 4              | 100 ns                     | 1/8              |             |
| 5              | 160 ns                     | 1/10             |             |

#### 19.5 Sampling Speed – the Width

[Note]: The higher sampling speed means it can capture fast or little discharge.

#### 19.6 The Time Scale of Display Screen

The horizontal axis on the screen is divided into 100 scales. It can be easily understood via simple observation as using the oscilloscope.

#### 19.7 Data Display of Laplacian

The Laplacian display contains 512-dot time axis, divided into 51 sections with 10 dots in each section on the histogram. The bar graph indicates the accumulated peak level in this 10-dot section. The test is also in this peak level.

# **20. Operating Procedure**

This chapter lists the frequently used test procedure for user reference. First, prepare a Master good coil to be tested and a coil to be tested.

# 20.1 Setting Master Waveform (Using Good Coil)

- Select Manual Mode → Press [F4].
- Set the pulse voltage VoltSet → Press the number [1] (the unit is x.x KV.)
- Set the pulse no. PulseSet → Press the number [2], the format is X.Y, X= applied pulse no., Y= dummy pulse no.
- Set the WIDTH [by movement keys], the screen shows the variation from -4 to 0 to 5.
- Execute the initialization Init.Set → Press [F1] the screen will show the Master waveform after applied the pulse.
- Based on the setting of the 3<sup>rd</sup> sampling speed, if the waveform is too large or small, reset it and execute Init.Set again.
- Predefine the JudgeSet GO/NG → Press the number [3].
- To set the AREA comparison test, press [\*] or press [-] to skip.
- If [\*] key is selected in the above step, "button" is required to set the range. The test range setting can also be done by the rotary knob. (Key [1] & [2] select the start of the comparison range, key [4] & [5] select the end of the comparison range.)
- Once the comparison range is set, press [Enter] to complete the input and go to the DIF. AREA setting of next.
- The unit of waveform AREA or DIF. AREA is percentage (%), ex. 10% or 20%.
- The setting procedure of DIF. AREA is the same as AREA.
- Once the DIF. AREA is set, it can set one of the Flutter or Laplacian for discharge.
- Set the area for comparison as described previously and then set the discharge value. (Note: The bottom of the screen shows the value after initialized the pulse for reference)
- The input of Flutter or Laplacian is started by [\*], enter [-] to skip it if no comparison.

### 20.2 Saving the Master Waveform

- (3) Store the Master waveforms got from the above steps 1-14 for future use.
- (4) Press [F3] in the main screen to go into Master mode.
- (5) Press Save [F2] to save the Master waveform to a filename within 8 characters.
- (6) Read the Master file saved by the above steps to confirm the storage is success.
- (7) Press Load [F1] and use the button to select and read the Master file.
- (8) Press [Enter] to recall it.

### 20.3 Executing Auto Test (Using Test Coil)

- (5) Once the procedures of save and load are done, conduct the GO/NG auto test next.
- (6) Press AUTO [F5].
- (7) Press [START] to conduct the test and show the result OK or NG.
- (8) Press [1] to confirm the judgment value.

# **21. Application Techniques**

# 21.1 Criteria Change for the Existing Master Waveform

The Master waveform stored in the memory can be recalled and saved again after changing the criteria in Manual mode.



#### CHROMA ATE INC. 致茂電子股份有限公司 66 Hwaya 1st Rd. Kuei-shan Hwaya Technology Park Taoyuan County 33383, Taiwan 33383 台灣桃園縣龜山鄉 華亞科技園區華亞一路 66 號 T +886-3-327-9999 F +886-3-327-8898 Mail: info@chromaate.com http://www.chromaate.com